From the Department of Physiology (V.O., A.E.K., C.D.S., J.L.G.), Medical College of Wisconsin, Milwaukee.
Cardiovascular Center (A.E.K., C.D.S., L.L.M., J.L.G.), Medical College of Wisconsin, Milwaukee.
Hypertension. 2021 Apr;77(4):1061-1068. doi: 10.1161/HYPERTENSIONAHA.120.14513. Epub 2021 Feb 22.
Obesity represents the single greatest ongoing roadblock to improving cardiovascular health. Prolonged obesity is associated with fundamental changes in the integrative control of energy balance, including the development of selective leptin resistance, which is thought to contribute to obesity-associated hypertension, and adaptation of resting metabolic rate (RMR) when excess weight is reduced. Leptin and the melanocortin system within the hypothalamus contribute to the control of both energy balance and blood pressure. While the development of drugs to stimulate RMR and thereby reverse obesity through activation of the melanocortin system has been pursued, most of the resulting compounds simultaneously cause hypertension. Evidence supports the concept that although feeding behaviors, RMR, and blood pressure are controlled through mechanisms that utilize similar molecular mediators, these mechanisms exist in anatomically dissociable networks. New evidence supports a major change in molecular signaling within AgRP (Agouti-related peptide) neurons of the arcuate nucleus of the hypothalamus during prolonged obesity and the existence of multiple distinct subtypes of AgRP neurons that individually contribute to control of feeding, RMR, or blood pressure. Finally, ongoing work by our laboratory and others support a unique role for AT (angiotensin II type 1 receptor) within one specific subtype of AgRP neuron for the control of RMR. We propose that understanding the unique biology of the AT-expressing, RMR-controlling subtype of AgRP neurons will help to resolve the selective dysfunctions in RMR control that develop during prolonged obesity and potentially point toward novel druggable antiobesity targets that will not simultaneously cause hypertension.
肥胖是改善心血管健康的最大障碍。长期肥胖与能量平衡的综合控制的根本变化有关,包括选择性瘦素抵抗的发展,这被认为有助于肥胖相关的高血压,以及当体重减轻时静息代谢率 (RMR) 的适应。瘦素和下丘脑内的黑皮质素系统有助于控制能量平衡和血压。虽然已经开发了刺激 RMR 的药物来通过激活黑皮质素系统来逆转肥胖,但大多数由此产生的化合物同时导致高血压。有证据支持这样一种观点,即尽管进食行为、RMR 和血压是通过利用类似分子介质的机制来控制的,但这些机制存在于解剖上可分离的网络中。新的证据支持在长期肥胖期间下丘脑弓状核中的 AgRP(Agouti 相关肽)神经元内发生的分子信号的重大变化,以及存在多个不同亚型的 AgRP 神经元,它们分别有助于控制进食、RMR 或血压。最后,我们实验室和其他实验室的正在进行的工作支持 AT(血管紧张素 II 型 1 受体)在 AgRP 神经元的一种特定亚型内对 RMR 控制的独特作用。我们提出,了解表达 AT、控制 RMR 的 AgRP 神经元的独特生物学将有助于解决长期肥胖期间 RMR 控制中出现的选择性功能障碍,并可能指向新的可靶向的抗肥胖靶点,而不会同时导致高血压。