Suppr超能文献

海马体中的经验依赖型上下文代码。

Experience-dependent contextual codes in the hippocampus.

机构信息

Department of Neurobiology, Stanford University, Stanford, CA, USA.

出版信息

Nat Neurosci. 2021 May;24(5):705-714. doi: 10.1038/s41593-021-00816-6. Epub 2021 Mar 22.

Abstract

The hippocampus contains neural representations capable of supporting declarative memory. Hippocampal place cells are one such representation, firing in one or few locations in a given environment. Between environments, place cell firing fields remap (turning on/off or moving to a new location) to provide a population-wide code for distinct contexts. However, the manner by which contextual features combine to drive hippocampal remapping remains a matter of debate. Using large-scale in vivo two-photon intracellular calcium recordings in mice during virtual navigation, we show that remapping in the hippocampal region CA1 is driven by prior experience regarding the frequency of certain contexts and that remapping approximates an optimal estimate of the identity of the current context. A simple associative-learning mechanism reproduces these results. Together, our findings demonstrate that place cell remapping allows an animal to simultaneously identify its physical location and optimally estimate the identity of the environment.

摘要

海马体包含能够支持陈述性记忆的神经表示。海马体位置细胞就是这样一种表示,在给定环境中在一个或少数几个位置发射。在环境之间,位置细胞发射场重新映射(打开/关闭或移动到新位置),以提供用于不同上下文的广泛的群体代码。然而,上下文特征组合以驱动海马体重新映射的方式仍然存在争议。在虚拟导航过程中,我们使用在小鼠中进行的大规模体内双光子细胞内钙记录,表明 CA1 海马区的重新映射是由关于某些上下文频率的先前经验驱动的,并且重新映射近似于当前上下文身份的最佳估计。一个简单的联想学习机制再现了这些结果。总之,我们的发现表明,位置细胞重新映射使动物能够同时识别其物理位置并最佳估计环境的身份。

相似文献

1
Experience-dependent contextual codes in the hippocampus.
Nat Neurosci. 2021 May;24(5):705-714. doi: 10.1038/s41593-021-00816-6. Epub 2021 Mar 22.
2
Dynamic coding of dorsal hippocampal neurons between tasks that differ in structure and memory demand.
Hippocampus. 2013 Feb;23(2):169-86. doi: 10.1002/hipo.22079. Epub 2012 Oct 4.
3
Long-Term Characterization of Hippocampal Remapping during Contextual Fear Acquisition and Extinction.
J Neurosci. 2020 Oct 21;40(43):8329-8342. doi: 10.1523/JNEUROSCI.1022-20.2020. Epub 2020 Sep 21.
4
5
Neural Firing Patterns Are More Schematic and Less Sensitive to Changes in Background Visual Scenes in the Subiculum than in the Hippocampus.
J Neurosci. 2018 Aug 22;38(34):7392-7408. doi: 10.1523/JNEUROSCI.0156-18.2018. Epub 2018 Jul 16.
6
Reactivation of Rate Remapping in CA3.
J Neurosci. 2016 Sep 7;36(36):9342-50. doi: 10.1523/JNEUROSCI.1678-15.2016.
7
Place field assembly distribution encodes preferred locations.
PLoS Biol. 2017 Sep 12;15(9):e2002365. doi: 10.1371/journal.pbio.2002365. eCollection 2017 Sep.
8
Characteristics of CA1 place fields in a complex maze with multiple choice points.
Hippocampus. 2018 Feb;28(2):81-96. doi: 10.1002/hipo.22810. Epub 2017 Nov 8.
10
Animal-to-Animal Variability in Partial Hippocampal Remapping in Repeated Environments.
J Neurosci. 2022 Jun 29;42(26):5268-5280. doi: 10.1523/JNEUROSCI.3221-20.2022. Epub 2022 May 31.

引用本文的文献

1
Three types of remapping with linear decoders: a population-geometric perspective.
bioRxiv. 2025 Aug 11:2025.03.14.643251. doi: 10.1101/2025.03.14.643251.
2
Structured experience shapes strategy learning and neural dynamics in the medial entorhinal cortex.
Res Sq. 2025 May 28:rs.3.rs-6658028. doi: 10.21203/rs.3.rs-6658028/v1.
3
A flexible hippocampal population code for experience relative to reward.
Nat Neurosci. 2025 Jun 11. doi: 10.1038/s41593-025-01985-4.
4
Formation of an expanding memory representation in the hippocampus.
Nat Neurosci. 2025 Jun 4. doi: 10.1038/s41593-025-01986-3.
5
Structured experience shapes strategy learning and neural dynamics in the medial entorhinal cortex.
bioRxiv. 2025 May 13:2025.05.13.653873. doi: 10.1101/2025.05.13.653873.
6
Mechanisms of experience-dependent place-cell referencing in hippocampal area CA1.
Nat Neurosci. 2025 Apr 1. doi: 10.1038/s41593-025-01930-5.
7
Learning reshapes the hippocampal representation hierarchy.
Proc Natl Acad Sci U S A. 2025 Mar 18;122(11):e2417025122. doi: 10.1073/pnas.2417025122. Epub 2025 Mar 10.
8
Global remapping emerges as the mechanism for renewal of context-dependent behavior in a reinforcement learning model.
Front Comput Neurosci. 2025 Jan 15;18:1462110. doi: 10.3389/fncom.2024.1462110. eCollection 2024.

本文引用的文献

1
A hypothalamic novelty signal modulates hippocampal memory.
Nature. 2020 Oct;586(7828):270-274. doi: 10.1038/s41586-020-2771-1. Epub 2020 Sep 30.
2
DG-CA3 circuitry mediates hippocampal representations of latent information.
Nat Commun. 2020 Jun 15;11(1):3026. doi: 10.1038/s41467-020-16825-1.
3
Hippocampal remapping as hidden state inference.
Elife. 2020 Jun 9;9:e51140. doi: 10.7554/eLife.51140.
4
High-performance calcium sensors for imaging activity in neuronal populations and microcompartments.
Nat Methods. 2019 Jul;16(7):649-657. doi: 10.1038/s41592-019-0435-6. Epub 2019 Jun 17.
5
Parallel emergence of stable and dynamic memory engrams in the hippocampus.
Nature. 2018 Jun;558(7709):292-296. doi: 10.1038/s41586-018-0191-2. Epub 2018 Jun 6.
6
Increased Prevalence of Calcium Transients across the Dendritic Arbor during Place Field Formation.
Neuron. 2017 Oct 11;96(2):490-504.e5. doi: 10.1016/j.neuron.2017.09.029.
7
The hippocampus as a predictive map.
Nat Neurosci. 2017 Nov;20(11):1643-1653. doi: 10.1038/nn.4650. Epub 2017 Oct 2.
9
Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit.
Nature. 2017 Mar 29;543(7647):719-722. doi: 10.1038/nature21692.
10
Sublayer-Specific Coding Dynamics during Spatial Navigation and Learning in Hippocampal Area CA1.
Neuron. 2016 Aug 3;91(3):652-65. doi: 10.1016/j.neuron.2016.06.020. Epub 2016 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验