Suppr超能文献

通过 ac4C-seq 实现 RNA 胞嘧啶乙酰化的定量核苷酸分辨率分析。

Quantitative nucleotide resolution profiling of RNA cytidine acetylation by ac4C-seq.

机构信息

Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.

Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.

出版信息

Nat Protoc. 2021 Apr;16(4):2286-2307. doi: 10.1038/s41596-021-00501-9. Epub 2021 Mar 26.

Abstract

A prerequisite to defining the transcriptome-wide functions of RNA modifications is the ability to accurately determine their location. Here, we present N4-acetylcytidine (ac4C) sequencing (ac4C-seq), a protocol for the quantitative single-nucleotide resolution mapping of cytidine acetylation in RNA. This method exploits the kinetically facile chemical reaction of ac4C with sodium cyanoborohydride under acidic conditions to form a reduced nucleobase. RNA is then fragmented, ligated to an adapter at its 3' end and reverse transcribed to introduce a non-cognate nucleotide at reduced ac4C sites. After adapter ligation, library preparation and high-throughput sequencing, a bioinformatic pipeline enables identification of ac4C positions on the basis of the presence of C→T misincorporations in reduced samples but not in controls. Unlike antibody-based approaches, ac4C-seq identifies specific ac4C residues and reports on their level of modification. The ac4C-seq library preparation protocol can be completed in ~4 d for transcriptome-wide sequencing.

摘要

定义 RNA 修饰的转录组功能的前提条件是能够准确确定它们的位置。在这里,我们提出了 N4-乙酰胞嘧啶(ac4C)测序(ac4C-seq),这是一种用于在 RNA 中定量单核苷酸分辨率检测胞嘧啶乙酰化的方法。该方法利用 ac4C 在酸性条件下与氰基硼氢化钠的动力学上容易的化学反应,形成还原碱基。然后将 RNA 片段化,在其 3' 端连接到接头,并反转录以在还原 ac4C 位点引入非同源核苷酸。在接头连接、文库制备和高通量测序后,生物信息学管道能够根据在还原样品中而不是对照中存在 C→T 错配来识别 ac4C 位置。与基于抗体的方法不同,ac4C-seq 可识别特定的 ac4C 残基并报告其修饰水平。ac4C-seq 文库制备方案可在大约 4 天内完成全转录组测序。

相似文献

1
Quantitative nucleotide resolution profiling of RNA cytidine acetylation by ac4C-seq.
Nat Protoc. 2021 Apr;16(4):2286-2307. doi: 10.1038/s41596-021-00501-9. Epub 2021 Mar 26.
2
Nucleotide resolution sequencing of N4-acetylcytidine in RNA.
Methods Enzymol. 2019;621:31-51. doi: 10.1016/bs.mie.2019.02.022. Epub 2019 Mar 12.
4
Emerging role of RNA acetylation modification ac4C in diseases: Current advances and future challenges.
Biochem Pharmacol. 2023 Jul;213:115628. doi: 10.1016/j.bcp.2023.115628. Epub 2023 May 27.
5
Protocol for base resolution mapping of ac4C using RedaC:T-seq.
STAR Protoc. 2022 Dec 16;3(4):101858. doi: 10.1016/j.xpro.2022.101858. Epub 2022 Nov 16.
6
iRNA-ac4C: A novel computational method for effectively detecting N4-acetylcytidine sites in human mRNA.
Int J Biol Macromol. 2023 Feb 1;227:1174-1181. doi: 10.1016/j.ijbiomac.2022.11.299. Epub 2022 Dec 5.
7
Site-Specific Synthesis of -Acetylcytidine in RNA Reveals Physiological Duplex Stabilization.
J Am Chem Soc. 2022 Mar 2;144(8):3487-3496. doi: 10.1021/jacs.1c11985. Epub 2022 Feb 16.
8
Profiling Cytidine Acetylation with Specific Affinity and Reactivity.
ACS Chem Biol. 2017 Dec 15;12(12):2922-2926. doi: 10.1021/acschembio.7b00734. Epub 2017 Oct 17.
9
PARP-dependent and NAT10-independent acetylation of N4-cytidine in RNA appears in UV-damaged chromatin.
Epigenetics Chromatin. 2023 Jun 15;16(1):26. doi: 10.1186/s13072-023-00501-x.
10
PACES: prediction of N4-acetylcytidine (ac4C) modification sites in mRNA.
Sci Rep. 2019 Jul 31;9(1):11112. doi: 10.1038/s41598-019-47594-7.

引用本文的文献

1
Research progress on NAT10-mediated acetylation in normal development and disease.
Front Cell Dev Biol. 2025 Aug 13;13:1623276. doi: 10.3389/fcell.2025.1623276. eCollection 2025.
3
Programmable RNA acetylation with CRISPR-Cas13.
Nat Chem Biol. 2025 Jun 2. doi: 10.1038/s41589-025-01922-3.
5
NAT10 and -acetylcytidine restrain R-loop levels and related inflammatory responses.
Sci Adv. 2025 Mar 28;11(13):eads6144. doi: 10.1126/sciadv.ads6144. Epub 2025 Mar 26.
6
A sequence-specific RNA acetylation catalyst.
Nucleic Acids Res. 2025 Mar 20;53(6). doi: 10.1093/nar/gkaf217.
8
Transfer RNA acetylation regulates in vivo mammalian stress signaling.
Sci Adv. 2025 Mar 21;11(12):eads2923. doi: 10.1126/sciadv.ads2923. Epub 2025 Mar 19.
9
Inhibition of Ribosome Biogenesis In Vivo Causes p53-Dependent Death and p53-Independent Dysfunction.
Cell Mol Gastroenterol Hepatol. 2025;19(7):101496. doi: 10.1016/j.jcmgh.2025.101496. Epub 2025 Mar 11.

本文引用的文献

1
Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping.
Nature. 2020 Jul;583(7817):638-643. doi: 10.1038/s41586-020-2418-2. Epub 2020 Jun 17.
2
Acetylation of Cytidine Residues Boosts HIV-1 Gene Expression by Increasing Viral RNA Stability.
Cell Host Microbe. 2020 Aug 12;28(2):306-312.e6. doi: 10.1016/j.chom.2020.05.011. Epub 2020 Jun 12.
3
Limited antibody specificity compromises epitranscriptomic analyses.
Nat Commun. 2019 Dec 11;10(1):5669. doi: 10.1038/s41467-019-13684-3.
4
Antibody cross-reactivity accounts for widespread appearance of mA in 5'UTRs.
Nat Commun. 2019 Nov 12;10(1):5126. doi: 10.1038/s41467-019-13146-w.
5
Accurate detection of mA RNA modifications in native RNA sequences.
Nat Commun. 2019 Sep 9;10(1):4079. doi: 10.1038/s41467-019-11713-9.
6
Nucleotide resolution sequencing of N4-acetylcytidine in RNA.
Methods Enzymol. 2019;621:31-51. doi: 10.1016/bs.mie.2019.02.022. Epub 2019 Mar 12.
8
Acetylation of Cytidine in mRNA Promotes Translation Efficiency.
Cell. 2018 Dec 13;175(7):1872-1886.e24. doi: 10.1016/j.cell.2018.10.030. Epub 2018 Nov 15.
9
AlkAniline-Seq: Profiling of m G and m C RNA Modifications at Single Nucleotide Resolution.
Angew Chem Int Ed Engl. 2018 Dec 17;57(51):16785-16790. doi: 10.1002/anie.201810946. Epub 2018 Nov 16.
10
Misincorporation signatures for detecting modifications in mRNA: Not as simple as it sounds.
Methods. 2019 Mar 1;156:53-59. doi: 10.1016/j.ymeth.2018.10.011. Epub 2018 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验