Suppr超能文献

基于影像组学的CT评分对囊性纤维化肺病的量化分析

Quantification of Cystic Fibrosis Lung Disease with Radiomics-based CT Scores.

作者信息

Chassagnon Guillaume, Zacharaki Evangelia I, Bommart Sébastien, Burgel Pierre-Régis, Chiron Raphael, Dangeard Séverine, Paragios Nikos, Martin Clémence, Revel Marie-Pierre

机构信息

Department of Radiology (G.C., S.D., M.P.R.) and Respiratory Medicine and National Cystic Reference Center (P.R.B.), Groupe Hospitalier Cochin-Hotel Dieu, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France; Center for Visual Computing, Ecole CentraleSupelec, Grande Voie des Vignes, Chatenay Malabry, France (G.C., E.I.Z., N.P.); U1016 Inserm, Institut Cochin, Paris, France (G.C., P.R.B., C.M., M.P.R.); Radiology Department (S.B.) and Pulmonary Department (R.C.), Hôpital Arnaud de Villeneuve, CHU de Montpellier, Université de Montpellier, Montpellier, France; ERN-Lung CF Network, France (P.R.B., C.M.); and TheraPanacea, Paris-Biotech-Santé, Paris, France (N.P.).

出版信息

Radiol Cardiothorac Imaging. 2020 Dec 17;2(6):e200022. doi: 10.1148/ryct.2020200022. eCollection 2020 Dec.

Abstract

PURPOSE

To develop radiomics-based CT scores for assessing lung disease severity and exacerbation risk in adult patients with cystic fibrosis (CF).

MATERIALS AND METHODS

This two-center retrospective observational study was approved by an institutional ethics committee, and the need for patient consent was waived. A total of 215 outpatients with CF referred for unenhanced follow-up chest CT were evaluated in two different centers between January 2013 and December 2016. After lung segmentation, chest CT scans from center 1 (training cohort, 162 patients [median age, 29 years; interquartile range {IQR}, 24-36 years; 84 men]) were used to build CT scores from 38 extracted CT features, using five different machine learning techniques trained to predict a clinical prognostic score, the Nkam score. The correlations between the developed CT scores, two different clinical prognostic scores (Liou and CF-ABLE), forced expiratory volume in 1 second (FEV), and risk of respiratory exacerbations were evaluated in the test cohort (center 2, 53 patients [median age, 27 years; IQR, 22-35 years; 34 men]) using the Spearman rank coefficient.

RESULTS

In the test cohort, all radiomics-based CT scores showed moderate to strong correlation with the Nkam score ( = 0.57 to 0.63, < .001) and Liou scores ( = -0.55 to -0.65, < .001), whereas the correlation with CF-ABLE score was weaker ( = 0.28 to 0.38, = .005 to .048). The developed CT scores showed strong correlation with predicted FEV ( = -0.62 to -0.66, < .001) and weak to moderate correlation with the number of pulmonary exacerbations to occur in the 12 months after the CT examination ( = 0.38 to 0.55, < .001 to = .006).

CONCLUSION

Radiomics can be used to build automated CT scores that correlate to clinical severity and exacerbation risk in adult patients with CF.Supplemental material is available for this article.See also the commentary by Elicker and Sohn in this issue.© RSNA, 2020.

摘要

目的

开发基于影像组学的CT评分系统,用于评估成年囊性纤维化(CF)患者的肺部疾病严重程度和急性加重风险。

材料与方法

本双中心回顾性观察研究经机构伦理委员会批准,无需患者签署知情同意书。2013年1月至2016年12月期间,在两个不同中心对215例因未增强胸部CT随访而转诊的CF门诊患者进行了评估。在进行肺部分割后,中心1(训练队列,162例患者[中位年龄29岁;四分位间距{IQR},24 - 36岁;84例男性])的胸部CT扫描用于从38个提取的CT特征构建CT评分,使用五种不同的机器学习技术进行训练,以预测临床预后评分Nkam评分。在测试队列(中心2,53例患者[中位年龄27岁;IQR,22 - 35岁;34例男性])中,使用Spearman秩系数评估所开发的CT评分与两种不同临床预后评分(Liou和CF - ABLE)、第1秒用力呼气容积(FEV)以及呼吸急性加重风险之间的相关性。

结果

在测试队列中,所有基于影像组学的CT评分与Nkam评分( = 0.57至0.63, <.001)和Liou评分( = - 0.55至 - 0.65, <.001)显示出中度至强相关性,而与CF - ABLE评分的相关性较弱( = 0.28至0.38, = 0.005至0.048)。所开发的CT评分与预测的FEV显示出强相关性( = - 0.62至 - 0.66, <.001),与CT检查后12个月内发生的肺部急性加重次数显示出弱至中度相关性( = 0.38至0.55, <.001至 = 0.006)。

结论

影像组学可用于构建与成年CF患者临床严重程度和急性加重风险相关的自动化CT评分。本文提供补充材料。另见本期Elicker和Sohn的评论。©RSNA,2020。

相似文献

1
Quantification of Cystic Fibrosis Lung Disease with Radiomics-based CT Scores.
Radiol Cardiothorac Imaging. 2020 Dec 17;2(6):e200022. doi: 10.1148/ryct.2020200022. eCollection 2020 Dec.
2
Use of Dynamic Chest Radiography to Assess Treatment of Pulmonary Exacerbations in Cystic Fibrosis.
Radiology. 2022 Jun;303(3):675-681. doi: 10.1148/radiol.212641. Epub 2022 Mar 15.
3
Quantification of MRI T2-weighted High Signal Volume in Cystic Fibrosis: A Pilot Study.
Radiology. 2020 Jan;294(1):186-196. doi: 10.1148/radiol.2019190797. Epub 2019 Oct 29.
4
An automated computed tomography score for the cystic fibrosis lung.
Eur Radiol. 2018 Dec;28(12):5111-5120. doi: 10.1007/s00330-018-5516-x. Epub 2018 Jun 4.
6
Volumetric quantification of lung MR signal intensities using ultrashort TE as an automated score in cystic fibrosis.
Eur Radiol. 2020 Oct;30(10):5479-5488. doi: 10.1007/s00330-020-06910-w. Epub 2020 May 15.
8
Quantitative chest computerized tomography and FEV equally identify pulmonary exacerbation risk in children with cystic fibrosis.
Pediatr Pulmonol. 2018 Oct;53(10):1369-1377. doi: 10.1002/ppul.24144. Epub 2018 Aug 29.
9
Bronchial measurement with three-dimensional quantitative thin-section CT in patients with cystic fibrosis.
Radiology. 2007 Feb;242(2):573-81. doi: 10.1148/radiol.2422060030. Epub 2006 Dec 19.
10
Chest computed tomography predicts the frequency of pulmonary exacerbations in children with cystic fibrosis.
Ann Am Thorac Soc. 2015 Jan;12(1):64-9. doi: 10.1513/AnnalsATS.201407-338OC.

引用本文的文献

1
Evolution and Prognostic Variables of Cystic Fibrosis in Children and Young Adults: A Narrative Review.
Diagnostics (Basel). 2025 Aug 2;15(15):1940. doi: 10.3390/diagnostics15151940.
4
Artificial intelligence in lung cancer: current applications and perspectives.
Jpn J Radiol. 2023 Mar;41(3):235-244. doi: 10.1007/s11604-022-01359-x. Epub 2022 Nov 9.
5
Radiomics and Computerized Analysis of CT Images: Looking Forward.
Radiol Cardiothorac Imaging. 2020 Dec 17;2(6):e200589. doi: 10.1148/ryct.2020200589. eCollection 2020 Dec.

本文引用的文献

1
The future of cystic fibrosis care: a global perspective.
Lancet Respir Med. 2020 Jan;8(1):65-124. doi: 10.1016/S2213-2600(19)30337-6. Epub 2019 Sep 27.
2
Radiomic measures from chest high-resolution computed tomography associated with lung function in sarcoidosis.
Eur Respir J. 2019 Aug 29;54(2). doi: 10.1183/13993003.00371-2019. Print 2019 Aug.
3
Validation of the French 3-year prognostic score using the Canadian Cystic Fibrosis registry.
J Cyst Fibros. 2019 May;18(3):396-398. doi: 10.1016/j.jcf.2018.10.014. Epub 2018 Nov 3.
4
An automated computed tomography score for the cystic fibrosis lung.
Eur Radiol. 2018 Dec;28(12):5111-5120. doi: 10.1007/s00330-018-5516-x. Epub 2018 Jun 4.
5
Influence of CT acquisition and reconstruction parameters on radiomic feature reproducibility.
J Med Imaging (Bellingham). 2018 Jan;5(1):011020. doi: 10.1117/1.JMI.5.1.011020. Epub 2018 Feb 15.
6
CT Texture Analysis: Definitions, Applications, Biologic Correlates, and Challenges.
Radiographics. 2017 Sep-Oct;37(5):1483-1503. doi: 10.1148/rg.2017170056.
8
The changing epidemiology and demography of cystic fibrosis.
Presse Med. 2017 Jun;46(6 Pt 2):e87-e95. doi: 10.1016/j.lpm.2017.04.012. Epub 2017 May 26.
9
A 3-year prognostic score for adults with cystic fibrosis.
J Cyst Fibros. 2017 Nov;16(6):702-708. doi: 10.1016/j.jcf.2017.03.004. Epub 2017 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验