Suppr超能文献

新型严重急性呼吸综合征冠状病毒2(SARS-CoV-2)变体及其对全球严重急性呼吸综合征冠状病毒2/冠状病毒病(COVID-19)疫苗接种计划的影响

Emerging SARS-CoV-2 Variants and Impact in Global Vaccination Programs against SARS-CoV-2/COVID-19.

作者信息

Gómez Carmen Elena, Perdiguero Beatriz, Esteban Mariano

机构信息

Centro Nacional de Biotecnología, Department of Molecular and Cellular Biology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.

出版信息

Vaccines (Basel). 2021 Mar 11;9(3):243. doi: 10.3390/vaccines9030243.

Abstract

The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants in different continents is causing a major concern in human global health. These variants have in common a higher transmissibility, becoming dominant within populations in a short time, and an accumulation of a high number of mutations in the spike (S) protein, especially within the amino terminal domain (NTD) and the receptor binding domain (RBD). These mutations have direct implications on virus infection rates through higher affinity of S RBD for the cellular angiotensin-converting enzyme-2 (ACE-2) receptor. There are also signs of enhanced virulence, re-infection frequency, and increased resistance to the action of monoclonal and polyclonal antibodies from convalescence sera and in vaccinated individuals in regions where the variants spread dominantly. In this review, we describe the different SARS-CoV-2 variants that have thus far been identified in various parts of the world with mutational changes and biological properties as well as their impact in medical countermeasures and human health.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)变种在不同大洲的出现,引发了全球人类健康领域的重大担忧。这些变种的共同特点是具有更高的传播性,能在短时间内在人群中占据主导地位,并且其刺突(S)蛋白,尤其是氨基末端结构域(NTD)和受体结合结构域(RBD)积累了大量突变。这些突变通过S RBD对细胞血管紧张素转换酶2(ACE-2)受体的更高亲和力,直接影响病毒感染率。在变种占主导传播的地区,还出现了毒力增强、再感染频率增加以及对康复血清中和接种疫苗个体的单克隆和多克隆抗体作用的抗性增加的迹象。在这篇综述中,我们描述了迄今为止在世界不同地区发现的具有突变变化和生物学特性的不同SARS-CoV-2变种,以及它们对医学应对措施和人类健康的影响。

相似文献

1
Emerging SARS-CoV-2 Variants and Impact in Global Vaccination Programs against SARS-CoV-2/COVID-19.
Vaccines (Basel). 2021 Mar 11;9(3):243. doi: 10.3390/vaccines9030243.
2
The Biological Functions and Clinical Significance of SARS-CoV-2 Variants of Corcern.
Front Med (Lausanne). 2022 May 20;9:849217. doi: 10.3389/fmed.2022.849217. eCollection 2022.
6
Cross-Neutralization of Emerging SARS-CoV-2 Variants of Concern by Antibodies Targeting Distinct Epitopes on Spike.
mBio. 2021 Dec 21;12(6):e0297521. doi: 10.1128/mBio.02975-21. Epub 2021 Nov 16.
7
SARS-CoV-2 Variants, RBD Mutations, Binding Affinity, and Antibody Escape.
Int J Mol Sci. 2021 Nov 9;22(22):12114. doi: 10.3390/ijms222212114.
8
Single domain antibodies derived from ancient animals as broadly neutralizing agents for SARS-CoV-2 and other coronaviruses.
Biomed Eng Adv. 2022 Dec;4:100054. doi: 10.1016/j.bea.2022.100054. Epub 2022 Sep 18.
9
Structural Basis of a Human Neutralizing Antibody Specific to the SARS-CoV-2 Spike Protein Receptor-Binding Domain.
Microbiol Spectr. 2021 Oct 31;9(2):e0135221. doi: 10.1128/Spectrum.01352-21. Epub 2021 Oct 13.

引用本文的文献

1
SARS-CoV-2 Infection and Antiviral Strategies: Advances and Limitations.
Viruses. 2025 Jul 30;17(8):1064. doi: 10.3390/v17081064.
2
Exploring the diverse factors influencing healthcare utilization during the COVID-19 crisis.
Front Public Health. 2025 May 16;13:1512735. doi: 10.3389/fpubh.2025.1512735. eCollection 2025.
3
Preeclamptic Placental CD19+ B Cells Are Causal to Hypertension During Pregnancy.
Hypertension. 2025 May;82(5):894-903. doi: 10.1161/HYPERTENSIONAHA.124.24552. Epub 2025 Apr 2.
7
Current Updates on Variants of SARS-CoV- 2: Systematic Review.
Health Sci Rep. 2024 Nov 4;7(11):e70166. doi: 10.1002/hsr2.70166. eCollection 2024 Nov.
8
A Regional-Scale Assessment-Based SARS-CoV-2 Variants Control Modeling with Implications for Infection Risk Characterization.
Infect Drug Resist. 2024 Oct 31;17:4791-4805. doi: 10.2147/IDR.S480086. eCollection 2024.
10
Design of the conserved epitope peptide of SARS-CoV-2 spike protein as the broad-spectrum COVID-19 vaccine.
Appl Microbiol Biotechnol. 2024 Oct 16;108(1):486. doi: 10.1007/s00253-024-13331-y.

本文引用的文献

1
Emergence and spread of a SARS-CoV-2 lineage A variant (A.23.1) with altered spike protein in Uganda.
Nat Microbiol. 2021 Aug;6(8):1094-1101. doi: 10.1038/s41564-021-00933-9. Epub 2021 Jun 23.
2
Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma.
Nature. 2021 May;593(7857):142-146. doi: 10.1038/s41586-021-03471-w. Epub 2021 Mar 29.
3
Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies.
Nat Med. 2021 May;27(5):917-924. doi: 10.1038/s41591-021-01318-5. Epub 2021 Mar 26.
4
Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant.
N Engl J Med. 2021 May 20;384(20):1885-1898. doi: 10.1056/NEJMoa2102214. Epub 2021 Mar 16.
5
Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7.
Nature. 2021 May;593(7857):130-135. doi: 10.1038/s41586-021-03398-2. Epub 2021 Mar 8.
6
SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma.
Nat Med. 2021 Apr;27(4):622-625. doi: 10.1038/s41591-021-01285-x. Epub 2021 Mar 2.
7
Hospitalization and mortality associated with SARS-CoV-2 viral clades in COVID-19.
Sci Rep. 2021 Feb 26;11(1):4802. doi: 10.1038/s41598-021-82850-9.
8
Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies.
Cell Host Microbe. 2021 Mar 10;29(3):463-476.e6. doi: 10.1016/j.chom.2021.02.003. Epub 2021 Feb 8.
9
Effect of the new SARS-CoV-2 variant B.1.1.7 on children and young people.
Lancet Child Adolesc Health. 2021 Apr;5(4):e9-e10. doi: 10.1016/S2352-4642(21)00030-4. Epub 2021 Feb 10.
10
Emergence of a Novel SARS-CoV-2 Variant in Southern California.
JAMA. 2021 Apr 6;325(13):1324-1326. doi: 10.1001/jama.2021.1612.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验