Suppr超能文献

过表达拟南芥双功能核酸酶增强了调控基因的表达,从而通过 ABA 介导的干旱胁迫信号提高了耐旱性。

Overexpression of , Arabidopsis Bifunctional Nuclease, Confers Drought Tolerance by Enhancing the Expression of Regulatory Genes in ABA-Mediated Drought Stress Signaling.

机构信息

Division of Life Sciences, Korea University, Seoul 02841, Korea.

Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea.

出版信息

Int J Mol Sci. 2021 Mar 13;22(6):2936. doi: 10.3390/ijms22062936.

Abstract

Drought is the most serious abiotic stress, which significantly reduces crop productivity. The phytohormone ABA plays a pivotal role in regulating stomatal closing upon drought stress. Here, we characterized the physiological function of AtBBD1, which has bifunctional nuclease activity, on drought stress. We found that AtBBD1 localized to the nucleus and cytoplasm, and was expressed strongly in trichomes and stomatal guard cells of leaves, based on promoter:GUS constructs. Expression analyses revealed that and are induced early and strongly by ABA and drought, and that is also strongly responsive to JA. We then compared phenotypes of two -overexpression lines (-OX), single knockout , and double knockout plants under drought conditions. We did not observe any phenotypic difference among them under normal growth conditions, while OX lines had greatly enhanced drought tolerance, lower transpirational water loss, and higher proline content than the WT and KOs. Moreover, by measuring seed germination rate and the stomatal aperture after ABA treatment, we found that -OX and plants showed significantly higher and lower ABA-sensitivity, respectively, than the WT. RNA sequencing analysis of -OX and plants under PEG-induced drought stress showed that overexpression of enhances the expression of key regulatory genes in the ABA-mediated drought signaling cascade, particularly by inducing genes related to ABA biosynthesis, downstream transcription factors, and other regulatory proteins, conferring -OXs with drought tolerance. Taken together, we suggest that AtBBD1 functions as a novel positive regulator of drought responses by enhancing the expression of ABA- and drought stress-responsive genes as well as by increasing proline content.

摘要

干旱是最严重的非生物胁迫之一,它显著降低了作物的生产力。植物激素 ABA 在调节干旱胁迫下的气孔关闭中起着关键作用。在这里,我们描述了具有双功能核酸酶活性的 AtBBD1 在干旱胁迫下的生理功能。我们发现 AtBBD1 定位于细胞核和细胞质,并且在叶片的毛状体和气孔保卫细胞中强烈表达,基于启动子:GUS 构建体。表达分析表明, 和 被 ABA 和干旱早期强烈诱导, 也对 JA 强烈响应。然后,我们比较了干旱条件下两个过表达系(-OX)、单个敲除 和双敲除 植物的表型。在正常生长条件下,它们之间没有观察到任何表型差异,而 OX 系具有增强的耐旱性、较低的蒸腾失水和较高的脯氨酸含量,而 WT 和 KO 系则较低。此外,通过测量种子发芽率和 ABA 处理后的气孔开度,我们发现 -OX 和 植物对 ABA 的敏感性分别显著高于和低于 WT。PEG 诱导干旱胁迫下 -OX 和 植物的 RNA 测序分析表明,过表达 增强了 ABA 介导的干旱信号级联中关键调节基因的表达,特别是通过诱导与 ABA 生物合成、下游转录因子和其他调节蛋白相关的基因,赋予 -OXs 耐旱性。总之,我们认为 AtBBD1 通过增强 ABA 和干旱胁迫响应基因的表达以及增加脯氨酸含量,作为干旱响应的新型正调节剂发挥作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验