Suppr超能文献

使用贝叶斯网络模型选择方法对一致性类模型进行患者共享网络的调查。

Investigation of patient-sharing networks using a Bayesian network model selection approach for congruence class models.

机构信息

Health Unit, Mathematica, Princeton, New Jersey, USA.

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.

出版信息

Stat Med. 2021 Jun 15;40(13):3167-3180. doi: 10.1002/sim.8969. Epub 2021 Apr 2.

Abstract

A Bayesian approach to conduct network model selection is presented for a general class of network models referred to as the congruence class models (CCMs). CCMs form a broad class that includes as special cases several common network models, such as the Erdős-Rényi-Gilbert model, stochastic block model, and many exponential random graph models. Due to the range of models that can be specified as CCMs, our proposed method is better able to select models consistent with generative mechanisms associated with observed networks than are current approaches. In addition, our approach allows for incorporation of prior information. We illustrate the use of this approach to select among several different proposed mechanisms for the structure of patient-sharing networks; such networks have been found to be associated with the cost and quality of medical care. We found evidence in support of heterogeneity in sociality but not selective mixing by provider type or degree.

摘要

提出了一种贝叶斯方法来进行网络模型选择,适用于一类被称为同余类模型 (CCM) 的通用网络模型。CCM 形成了一个广泛的类别,其中包括几个常见的网络模型作为特例,例如 Erdős-Rényi-Gilbert 模型、随机块模型和许多指数随机图模型。由于可以指定为 CCM 的模型范围很广,因此与观察到的网络相关的生成机制相比,我们提出的方法能够更好地选择一致的模型。此外,我们的方法允许纳入先验信息。我们说明了如何在几种不同的拟议机制中进行选择,这些机制用于患者共享网络的结构;已经发现这些网络与医疗保健的成本和质量有关。我们发现了支持社交异质性而不是按提供者类型或程度选择性混合的证据。

相似文献

1
2
Network inference from population-level observation of epidemics.
Sci Rep. 2020 Nov 2;10(1):18779. doi: 10.1038/s41598-020-75558-9.
3
Bayesian exponential random graph modelling of interhospital patient referral networks.
Stat Med. 2017 Aug 15;36(18):2902-2920. doi: 10.1002/sim.7301. Epub 2017 Apr 18.
4
Highly scalable maximum likelihood and conjugate Bayesian inference for ERGMs on graph sets with equivalent vertices.
PLoS One. 2022 Aug 26;17(8):e0273039. doi: 10.1371/journal.pone.0273039. eCollection 2022.
5
Probabilistic predictions of SIS epidemics on networks based on population-level observations.
Math Biosci. 2022 Aug;350:108854. doi: 10.1016/j.mbs.2022.108854. Epub 2022 Jun 2.
6
Joint Bayesian variable and graph selection for regression models with network-structured predictors.
Stat Med. 2016 Mar 30;35(7):1017-31. doi: 10.1002/sim.6792. Epub 2015 Oct 29.
7
A comparison between discrete and continuous time Bayesian networks in learning from clinical time series data with irregularity.
Artif Intell Med. 2019 Apr;95:104-117. doi: 10.1016/j.artmed.2018.10.002. Epub 2019 Jan 22.
8
Modelling animal network data in R using STRAND.
J Anim Ecol. 2024 Mar;93(3):254-266. doi: 10.1111/1365-2656.14021. Epub 2023 Nov 7.
9
Objective Bayesian Edge Screening and Structure Selection for Ising Networks.
Psychometrika. 2022 Mar;87(1):47-82. doi: 10.1007/s11336-022-09848-8. Epub 2022 Feb 22.
10
Bayesian inference of hub nodes across multiple networks.
Biometrics. 2019 Mar;75(1):172-182. doi: 10.1111/biom.12958. Epub 2018 Aug 23.

引用本文的文献

1
A Scoping Review of Multilevel Patient-Sharing Network Measures in Health Services Research.
Med Care Res Rev. 2025 Jun;82(3):203-224. doi: 10.1177/10775587241304140. Epub 2024 Dec 30.
2
Identification of system-level features in HIV migration within a host.
PLoS One. 2023 Sep 26;18(9):e0291367. doi: 10.1371/journal.pone.0291367. eCollection 2023.

本文引用的文献

1
Framework for converting mechanistic network models to probabilistic models.
J Complex Netw. 2023 Oct 20;11(5):cnad034. doi: 10.1093/comnet/cnad034. eCollection 2023 Oct.
2
A scoping review of patient-sharing network studies using administrative data.
Transl Behav Med. 2018 Jul 17;8(4):598-625. doi: 10.1093/tbm/ibx015.
3
Analysis of the U.S. patient referral network.
Stat Med. 2018 Feb 28;37(5):847-866. doi: 10.1002/sim.7565. Epub 2017 Dec 4.
4
Patient-Sharing Networks of Physicians and Health Care Utilization and Spending Among Medicare Beneficiaries.
JAMA Intern Med. 2018 Jan 1;178(1):66-73. doi: 10.1001/jamainternmed.2017.5034.
5
Geographic Variations in Physician Relationships Over Time: Implications for Care Coordination.
Med Care Res Rev. 2018 Oct;75(5):586-611. doi: 10.1177/1077558717697016. Epub 2017 Mar 17.
6
Association Between Physician Teamwork and Health System Outcomes After Coronary Artery Bypass Grafting.
Circ Cardiovasc Qual Outcomes. 2016 Nov;9(6):641-648. doi: 10.1161/CIRCOUTCOMES.116.002714. Epub 2016 Nov 8.
7
Characterizing Teamwork in Cardiovascular Care Outcomes: A Network Analytics Approach.
Circ Cardiovasc Qual Outcomes. 2016 Nov;9(6):670-678. doi: 10.1161/CIRCOUTCOMES.116.003041. Epub 2016 Nov 8.
8
An Outcome-Weighted Network Model for Characterizing Collaboration.
PLoS One. 2016 Oct 5;11(10):e0163861. doi: 10.1371/journal.pone.0163861. eCollection 2016.
9
An analysis of patient-sharing physician networks and implantable cardioverter defibrillator therapy.
Health Serv Outcomes Res Methodol. 2016 Sep;16(3):132-153. doi: 10.1007/s10742-016-0152-x. Epub 2016 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验