McCallum Matthew, Bassi Jessica, Marco Anna De, Chen Alex, Walls Alexandra C, Iulio Julia Di, Tortorici M Alejandra, Navarro Mary-Jane, Silacci-Fregni Chiara, Saliba Christian, Agostini Maria, Pinto Dora, Culap Katja, Bianchi Siro, Jaconi Stefano, Cameroni Elisabetta, Bowen John E, Tilles Sasha W, Pizzuto Matteo Samuele, Guastalla Sonja Bernasconi, Bona Giovanni, Pellanda Alessandra Franzetti, Garzoni Christian, Van Voorhis Wesley C, Rosen Laura E, Snell Gyorgy, Telenti Amalio, Virgin Herbert W, Piccoli Luca, Corti Davide, Veesler David
bioRxiv. 2021 Apr 1:2021.03.31.437925. doi: 10.1101/2021.03.31.437925.
SARS-CoV-2 entry is mediated by the spike (S) glycoprotein which contains the receptor-binding domain (RBD) and the N-terminal domain (NTD) as the two main targets of neutralizing antibodies (Abs). A novel variant of concern (VOC) named CAL.20C (B.1.427/B.1.429) was originally detected in California and is currently spreading throughout the US and 29 additional countries. It is unclear whether antibody responses to SARS-CoV-2 infection or to the prototypic Wuhan-1 isolate-based vaccines will be impacted by the three B.1.427/B.1.429 S mutations: S13I, W152C and L452R. Here, we assessed neutralizing Ab responses following natural infection or mRNA vaccination using pseudoviruses expressing the wildtype or the B.1.427/B.1.429 S protein. Plasma from vaccinated or convalescent individuals exhibited neutralizing titers, which were reduced 3-6 fold against the B.1.427/B.1.429 variant relative to wildtype pseudoviruses. The RBD L452R mutation reduced or abolished neutralizing activity of 14 out of 35 RBD-specific monoclonal antibodies (mAbs), including three clinical-stage mAbs. Furthermore, we observed a complete loss of B.1.427/B.1.429 neutralization for a panel of mAbs targeting the N-terminal domain due to a large structural rearrangement of the NTD antigenic supersite involving an S13I-mediated shift of the signal peptide cleavage site. These data warrant closer monitoring of signal peptide variants and their involvement in immune evasion and show that Abs directed to the NTD impose a selection pressure driving SARS-CoV-2 viral evolution through conventional and unconventional escape mechanisms.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的进入是由刺突(S)糖蛋白介导的,该蛋白包含受体结合域(RBD)和N端结构域(NTD),是中和抗体(Abs)的两个主要靶点。一种名为CAL.20C(B.1.427/B.1.429)的新型关注变体最初在加利福尼亚被检测到,目前正在美国和另外29个国家传播。尚不清楚对SARS-CoV-2感染或基于原型武汉-1毒株的疫苗的抗体反应是否会受到B.1.427/B.1.429 S蛋白的三个突变(S13I、W152C和L452R)的影响。在此,我们使用表达野生型或B.1.427/B.1.429 S蛋白的假病毒评估了自然感染或mRNA疫苗接种后的中和抗体反应。接种疫苗或康复个体的血浆表现出中和滴度,相对于野生型假病毒,对B.1.427/B.1.429变体的中和滴度降低了3至6倍。RBD L452R突变降低或消除了35种RBD特异性单克隆抗体(mAbs)中的14种的中和活性,包括三种临床阶段的mAbs。此外,我们观察到一组靶向N端结构域的mAbs对B.1.427/B.1.429的中和作用完全丧失,这是由于NTD抗原超位点的大规模结构重排,涉及信号肽切割位点的S13I介导的移位。这些数据值得密切监测信号肽变体及其在免疫逃逸中的作用,并表明针对NTD的抗体通过传统和非常规逃逸机制施加了驱动SARS-CoV-2病毒进化的选择压力。