Suppr超能文献

协调逃避和空间导航回路协调灵活的飞行以避开威胁。

Coordination of escape and spatial navigation circuits orchestrates versatile flight from threats.

机构信息

Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095, USA.

Department of Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.

出版信息

Neuron. 2021 Jun 2;109(11):1848-1860.e8. doi: 10.1016/j.neuron.2021.03.033. Epub 2021 Apr 15.

Abstract

Naturalistic escape requires versatile context-specific flight with rapid evaluation of local geometry to identify and use efficient escape routes. It is unknown how spatial navigation and escape circuits are recruited to produce context-specific flight. Using mice, we show that activity in cholecystokinin-expressing hypothalamic dorsal premammillary nucleus (PMd-cck) cells is sufficient and necessary for context-specific escape that adapts to each environment's layout. In contrast, numerous other nuclei implicated in flight only induced stereotyped panic-related escape. We reasoned the dorsal premammillary nucleus (PMd) can induce context-specific escape because it projects to escape and spatial navigation nuclei. Indeed, activity in PMd-cck projections to thalamic spatial navigation circuits is necessary for context-specific escape induced by moderate threats but not panic-related stereotyped escape caused by perceived asphyxiation. Conversely, the PMd projection to the escape-inducing dorsal periaqueductal gray projection is necessary for all tested escapes. Thus, PMd-cck cells control versatile flight, engaging spatial navigation and escape circuits.

摘要

自然逃避需要多功能的上下文特定飞行,快速评估局部几何形状以识别和使用有效的逃避路线。目前尚不清楚空间导航和逃避电路如何被招募来产生上下文特定的飞行。使用小鼠,我们表明,表达胆囊收缩素的下丘脑背前乳突核(PMd-cck)细胞的活动足以且对于适应每个环境布局的上下文特定的逃逸是必要的。相比之下,许多其他与飞行有关的核仅引起刻板的与恐慌相关的逃逸。我们推断背前乳突核(PMd)可以诱导上下文特定的逃逸,因为它投射到逃逸和空间导航核。事实上,PMd-cck 投射到丘脑空间导航回路的活动对于由中度威胁引起的上下文特定的逃逸是必要的,但对于由感知窒息引起的刻板的与恐慌相关的逃逸则不是。相反,PMd 投射到诱导逃逸的背侧导水管周围灰质的投射对于所有测试的逃逸都是必要的。因此,PMd-cck 细胞控制着多功能的飞行,涉及空间导航和逃逸回路。

相似文献

1
Coordination of escape and spatial navigation circuits orchestrates versatile flight from threats.
Neuron. 2021 Jun 2;109(11):1848-1860.e8. doi: 10.1016/j.neuron.2021.03.033. Epub 2021 Apr 15.
5
Afferent connections of the dorsal premammillary nucleus.
J Comp Neurol. 2000 Jul 17;423(1):83-98. doi: 10.1002/1096-9861(20000717)423:1<83::aid-cne7>3.0.co;2-3.
7
Sensing danger through the olfactory system: the role of the hypothalamic dorsal premammillary nucleus.
Neurosci Biobehav Rev. 2008 Sep;32(7):1228-35. doi: 10.1016/j.neubiorev.2008.05.009. Epub 2008 May 13.
8
A role for the anteromedial thalamic nucleus in the acquisition of contextual fear memory to predatory threats.
Brain Struct Funct. 2017 Jan;222(1):113-129. doi: 10.1007/s00429-016-1204-2. Epub 2016 Mar 7.

引用本文的文献

2
A molecularly defined brain circuit module for regulating panic-like defensive state.
Nat Commun. 2025 Jul 1;16(1):5523. doi: 10.1038/s41467-025-60529-3.
4
Hypothalamic Control of Learned Flight Induced by Threat Imminence.
J Neurosci. 2025 May 7;45(19):e1806242025. doi: 10.1523/JNEUROSCI.1806-24.2025.
5
Assessing cognitive flexibility in mice using a custom-built touchscreen chamber.
Front Behav Neurosci. 2025 Feb 13;19:1536458. doi: 10.3389/fnbeh.2025.1536458. eCollection 2025.
6
The midline thalamic nucleus reuniens promotes compulsive-like grooming in rodents.
Transl Psychiatry. 2025 Feb 25;15(1):67. doi: 10.1038/s41398-025-03283-w.
9
The human hypothalamus coordinates switching between different survival actions.
PLoS Biol. 2024 Jun 28;22(6):e3002624. doi: 10.1371/journal.pbio.3002624. eCollection 2024 Jun.
10
Tonically active GABAergic neurons in the dorsal periaqueductal gray control instinctive escape in mice.
Curr Biol. 2024 Jul 8;34(13):3031-3039.e7. doi: 10.1016/j.cub.2024.05.068. Epub 2024 Jun 26.

本文引用的文献

1
Long-Term Characterization of Hippocampal Remapping during Contextual Fear Acquisition and Extinction.
J Neurosci. 2020 Oct 21;40(43):8329-8342. doi: 10.1523/JNEUROSCI.1022-20.2020. Epub 2020 Sep 21.
2
Dynamic encoding of social threat and spatial context in the hypothalamus.
Elife. 2020 Sep 21;9:e57148. doi: 10.7554/eLife.57148.
3
Thermoregulation via Temperature-Dependent PGD Production in Mouse Preoptic Area.
Neuron. 2019 Jul 17;103(2):349. doi: 10.1016/j.neuron.2019.06.026.
4
Neurovascular Coupling in the Dentate Gyrus Regulates Adult Hippocampal Neurogenesis.
Neuron. 2019 Sep 4;103(5):878-890.e3. doi: 10.1016/j.neuron.2019.05.045. Epub 2019 Jun 27.
5
Using DeepLabCut for 3D markerless pose estimation across species and behaviors.
Nat Protoc. 2019 Jul;14(7):2152-2176. doi: 10.1038/s41596-019-0176-0. Epub 2019 Jun 21.
6
Central Amygdala Prepronociceptin-Expressing Neurons Mediate Palatable Food Consumption and Reward.
Neuron. 2019 Jun 5;102(5):1088. doi: 10.1016/j.neuron.2019.04.036.
7
Functional Involvement of Human Periaqueductal Gray and Other Midbrain Nuclei in Cognitive Control.
J Neurosci. 2019 Jul 31;39(31):6180-6189. doi: 10.1523/JNEUROSCI.2043-18.2019. Epub 2019 Jun 3.
8
Hyperactivity with Disrupted Attention by Activation of an Astrocyte Synaptogenic Cue.
Cell. 2019 May 16;177(5):1280-1292.e20. doi: 10.1016/j.cell.2019.03.019. Epub 2019 Apr 25.
9
Circuit Investigations With Open-Source Miniaturized Microscopes: Past, Present and Future.
Front Cell Neurosci. 2019 Apr 5;13:141. doi: 10.3389/fncel.2019.00141. eCollection 2019.
10
A Common Neuroendocrine Substrate for Diverse General Anesthetics and Sleep.
Neuron. 2019 Jun 5;102(5):1053-1065.e4. doi: 10.1016/j.neuron.2019.03.033. Epub 2019 Apr 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验