Suppr超能文献

模拟美国电子烟对人口健康的影响

Modeling the Population Health Impact of ENDS in the U.S.

机构信息

Vice President Data, Juul Labs Inc, Washington, DC, United States.

Modeling and Simulations Scientist, Juul Labs Inc, Washington, DC, United States.

出版信息

Am J Health Behav. 2021 May 1;45(3):588-610. doi: 10.5993/AJHB.45.3.12.

Abstract

Our objective was to improve understanding of the population health impact of electronic nicotine delivery systems (ENDS) availability in the US via computational modeling. We present an agent-based population health model (PHM) that simulates annual smoking, ENDS use, and associated mortality for individual agents representing the US population, both adults and youth, between 2000 and 2100. Model transitions were derived from key population surveys and a large longitudinal study of JUUL purchasers. The mortality impact of ENDS is modeled as excess risk relative to smoking. Outcomes are compared between a cigarettes-only Base Case and a Modified Case where ENDS are introduced in 2010. Model validation demonstrates that the PHM simulates population-level behavior and outcomes realistically. The availability of ENDS in the US is projected to reduce smoking and prevent 2.5 million premature deaths by 2100 in the Modified Case. Sensitivity analyses show that a significant population health benefit occurs under all plausible scenarios. Our results suggest the availability of ENDS is likely to result in a significant health benefit to the US population as a whole, after accounting for both beneficial and harmful uses.

摘要

我们的目标是通过计算建模来提高对美国电子尼古丁传送系统(ENDS)供应对人口健康影响的理解。我们提出了一个基于代理的人口健康模型(PHM),该模型模拟了代表美国人口(包括成年人和青少年)的个体代理在 2000 年至 2100 年期间的吸烟、ENDS 使用和相关死亡率。模型转换来自关键人群调查和对 JUUL 购买者的大型纵向研究。ENDS 的死亡率影响被建模为与吸烟相比的超额风险。将只包含香烟的基础案例和 2010 年引入 ENDS 的修改案例进行比较。模型验证表明,PHM 真实地模拟了人口层面的行为和结果。在美国,ENDS 的供应预计将减少吸烟,并在修改案例中预防 2100 年的 250 万例过早死亡。敏感性分析表明,在所有合理的情况下,都会产生重大的人口健康效益。我们的研究结果表明,在考虑到有益和有害用途后,ENDS 的供应很可能会对美国整体人口产生重大健康效益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验