Suppr超能文献

聚合物添加剂对3D打印机丝状材料气相排放物的影响。

Influence of polymer additives on gas-phase emissions from 3D printer filaments.

作者信息

Potter Phillip M, Al-Abed Souhail R, Hasan Farhana, Lomnicki Slawomir M

机构信息

Oak Ridge Institute for Science and Education (ORISE), EPA, Cincinnati, OH, 45268, USA.

Center for Environmental Solutions and Emergency Response (CESER), EPA, Cincinnati, OH, 45268, USA.

出版信息

Chemosphere. 2021 Sep;279:130543. doi: 10.1016/j.chemosphere.2021.130543. Epub 2021 Apr 15.

Abstract

A collection of six commercially available, 3D printer filaments were analyzed with respect to their gas-phase emissions, specifically volatile organic compounds (VOCs), during simulated fused filament fabrication (FFF). Filaments were chosen because they were advertised to contain metal particles or carbon nanotubes. During experimentation, some were found to contain other non-advertised additives that greatly influenced gas-phase emissions. Three polylactic acid (PLA) filaments containing either copper, bronze, or stainless steel particles were studied along in addition to three carbon nanotube (CNT) filaments made from PLA, acrylonitrile-butadiene-styrene (ABS), and polycarbonate (PC). The metal-additive PLA filaments were found to emit primarily lactide, acetaldehyde, and 1-chlorododecane. The presence of metal particles in the PLA is a possible cause of the increased total emissions, which were higher than any other PLA filament reported in the literature. In addition, the filament with stainless steel particles had a threefold increase in total VOCs compared to the copper and bronze particles. Two of three CNT-containing filaments emitted compounds that have not been reported before for PLA and PC. A comparison between certain emitted VOCs and their suggested maximum inhalation limits shows that printing as little as 20 g of certain filaments in a small, unventilated room can subject the user to hazardous concentrations of multiple toxic VOCs with carcinogenic properties (e.g., acetaldehyde, 1,4-dioxane, and bis(2-ethylhexyl) phthalate). The use of certain additives, whether advertised or not, should be reevaluated due to their effects on VOC emissions during 3D printing.

摘要

对六种市售的3D打印机细丝进行了分析,以研究它们在模拟熔融长丝制造(FFF)过程中的气相排放,特别是挥发性有机化合物(VOCs)。选择这些细丝是因为它们被宣传含有金属颗粒或碳纳米管。在实验过程中,发现其中一些细丝含有其他未宣传的添加剂,这些添加剂对气相排放有很大影响。除了三种由聚乳酸(PLA)、丙烯腈-丁二烯-苯乙烯(ABS)和聚碳酸酯(PC)制成的碳纳米管(CNT)细丝外,还对三种分别含有铜、青铜或不锈钢颗粒的聚乳酸细丝进行了研究。发现含金属添加剂的聚乳酸细丝主要排放丙交酯、乙醛和1-氯十二烷。聚乳酸中金属颗粒的存在可能是总排放量增加的原因,其排放量高于文献中报道的任何其他聚乳酸细丝。此外,与含铜和青铜颗粒的细丝相比,含不锈钢颗粒的细丝总挥发性有机化合物增加了两倍。三种含碳纳米管的细丝中有两种排放了聚乳酸和聚碳酸酯以前未报道过的化合物。某些排放的挥发性有机化合物与其建议的最大吸入限值之间的比较表明,在一个小的、不通风的房间里打印低至20克的某些细丝,可能会使使用者接触到具有致癌特性的多种有毒挥发性有机化合物的危险浓度(例如乙醛、1,4-二恶烷和双(2-乙基己基)邻苯二甲酸酯)。由于某些添加剂对3D打印过程中挥发性有机化合物排放的影响,无论是否宣传过,都应重新评估其使用。

相似文献

1
Influence of polymer additives on gas-phase emissions from 3D printer filaments.
Chemosphere. 2021 Sep;279:130543. doi: 10.1016/j.chemosphere.2021.130543. Epub 2021 Apr 15.
2
Lung cell toxicological effects of 3D printer aerosolized filament byproducts.
Environ Sci Pollut Res Int. 2025 Feb;32(9):5078-5090. doi: 10.1007/s11356-025-36006-1. Epub 2025 Feb 4.
4
Characterization of emissions from a desktop 3D printer and indoor air measurements in office settings.
J Occup Environ Hyg. 2016;13(2):121-32. doi: 10.1080/15459624.2015.1091957.
5
Emission Profiles of Volatiles during 3D Printing with ABS, ASA, Nylon, and PETG Polymer Filaments.
Molecules. 2022 Jun 14;27(12):3814. doi: 10.3390/molecules27123814.
6
Characterization of chemical contaminants generated by a desktop fused deposition modeling 3-dimensional Printer.
J Occup Environ Hyg. 2017 Jul;14(7):540-550. doi: 10.1080/15459624.2017.1302589.
7
Evaluation of particle and volatile organic compound emissions during the use of 3D pens.
Sci Total Environ. 2024 Jun 25;931:173003. doi: 10.1016/j.scitotenv.2024.173003. Epub 2024 May 6.
9
VOC Emissions and Formation Mechanisms from Carbon Nanotube Composites during 3D Printing.
Environ Sci Technol. 2019 Apr 16;53(8):4364-4370. doi: 10.1021/acs.est.9b00765. Epub 2019 Mar 26.
10
Chemical Composition and Toxicity of Particles Emitted from a Consumer-Level 3D Printer Using Various Materials.
Environ Sci Technol. 2019 Oct 15;53(20):12054-12061. doi: 10.1021/acs.est.9b04168. Epub 2019 Sep 26.

引用本文的文献

1
3D printing: Balancing innovation for sustainability with emerging environmental and health risks.
iScience. 2025 Jul 23;28(8):113185. doi: 10.1016/j.isci.2025.113185. eCollection 2025 Aug 15.
3
Lung cell toxicological effects of 3D printer aerosolized filament byproducts.
Environ Sci Pollut Res Int. 2025 Feb;32(9):5078-5090. doi: 10.1007/s11356-025-36006-1. Epub 2025 Feb 4.
5
Pulmonary evaluation of whole-body inhalation exposure of polycarbonate (PC) filament 3D printer emissions in rats.
J Toxicol Environ Health A. 2024 Apr 17;87(8):325-341. doi: 10.1080/15287394.2024.2311170. Epub 2024 Feb 6.
6
Characterization of Volatile and Particulate Emissions from Desktop 3D Printers.
Sensors (Basel). 2023 Dec 6;23(24):9660. doi: 10.3390/s23249660.
7
Characterization of 3D printing filaments containing metal additives and their particulate emissions.
Sci Total Environ. 2023 Jun 1;875:162648. doi: 10.1016/j.scitotenv.2023.162648. Epub 2023 Mar 9.
8
Microplastics and their Additives in the Indoor Environment.
Angew Chem Int Ed Engl. 2022 Aug 8;61(32):e202205713. doi: 10.1002/anie.202205713. Epub 2022 Jul 8.
9
Human exposure to metals in consumer-focused fused filament fabrication (FFF)/ 3D printing processes.
Sci Total Environ. 2022 Mar 25;814:152622. doi: 10.1016/j.scitotenv.2021.152622. Epub 2021 Dec 25.
10
3D Printing of Thermo-Sensitive Drugs.
Pharmaceutics. 2021 Sep 21;13(9):1524. doi: 10.3390/pharmaceutics13091524.

本文引用的文献

1
The characteristics and formation mechanisms of emissions from thermal decomposition of 3D printer polymer filaments.
Sci Total Environ. 2019 Nov 20;692:984-994. doi: 10.1016/j.scitotenv.2019.07.257. Epub 2019 Jul 17.
2
Chemical Composition and Toxicity of Particles Emitted from a Consumer-Level 3D Printer Using Various Materials.
Environ Sci Technol. 2019 Oct 15;53(20):12054-12061. doi: 10.1021/acs.est.9b04168. Epub 2019 Sep 26.
3
Role of FeO in fly ash surrogate on PCDD/Fs formation from 2-monochlorophenol.
Chemosphere. 2019 Jul;226:809-816. doi: 10.1016/j.chemosphere.2019.03.175. Epub 2019 Mar 29.
4
VOC Emissions and Formation Mechanisms from Carbon Nanotube Composites during 3D Printing.
Environ Sci Technol. 2019 Apr 16;53(8):4364-4370. doi: 10.1021/acs.est.9b00765. Epub 2019 Mar 26.
5
Characterization and Control of Nanoparticle Emission during 3D Printing.
Environ Sci Technol. 2017 Sep 19;51(18):10357-10368. doi: 10.1021/acs.est.7b01454. Epub 2017 Aug 30.
6
Aerosol Emissions from Fuse-Deposition Modeling 3D Printers in a Chamber and in Real Indoor Environments.
Environ Sci Technol. 2017 Sep 5;51(17):9516-9523. doi: 10.1021/acs.est.7b01546. Epub 2017 Aug 23.
7
Costs, Benefits, and Adoption of Additive Manufacturing: A Supply Chain Perspective.
Int J Adv Manuf Technol. 2016 Jul;85(5-8):1857-1876. doi: 10.1007/s00170-015-7973-6. Epub 2015 Nov 14.
8
Characterization of chemical contaminants generated by a desktop fused deposition modeling 3-dimensional Printer.
J Occup Environ Hyg. 2017 Jul;14(7):540-550. doi: 10.1080/15459624.2017.1302589.
9
Airborne particle emission of a commercial 3D printer: the effect of filament material and printing temperature.
Indoor Air. 2017 Mar;27(2):398-408. doi: 10.1111/ina.12310. Epub 2016 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验