Suppr超能文献

测序深度对宏基因组样本推断的分类组成和抗菌药物耐药基因含量的影响。

The impact of sequencing depth on the inferred taxonomic composition and AMR gene content of metagenomic samples.

作者信息

Gweon H Soon, Shaw Liam P, Swann Jeremy, De Maio Nicola, AbuOun Manal, Niehus Rene, Hubbard Alasdair T M, Bowes Mike J, Bailey Mark J, Peto Tim E A, Hoosdally Sarah J, Walker A Sarah, Sebra Robert P, Crook Derrick W, Anjum Muna F, Read Daniel S, Stoesser Nicole

机构信息

Harborne Building, School of Biological Sciences, University of Reading, Reading, RG6 6AS, UK.

Centre for Ecology & Hydrology, Wallingford, Oxfordshire, OX10 8BB, UK.

出版信息

Environ Microbiome. 2019 Oct 24;14(1):7. doi: 10.1186/s40793-019-0347-1.

Abstract

BACKGROUND

Shotgun metagenomics is increasingly used to characterise microbial communities, particularly for the investigation of antimicrobial resistance (AMR) in different animal and environmental contexts. There are many different approaches for inferring the taxonomic composition and AMR gene content of complex community samples from shotgun metagenomic data, but there has been little work establishing the optimum sequencing depth, data processing and analysis methods for these samples. In this study we used shotgun metagenomics and sequencing of cultured isolates from the same samples to address these issues. We sampled three potential environmental AMR gene reservoirs (pig caeca, river sediment, effluent) and sequenced samples with shotgun metagenomics at high depth (~ 200 million reads per sample). Alongside this, we cultured single-colony isolates of Enterobacteriaceae from the same samples and used hybrid sequencing (short- and long-reads) to create high-quality assemblies for comparison to the metagenomic data. To automate data processing, we developed an open-source software pipeline, 'ResPipe'.

RESULTS

Taxonomic profiling was much more stable to sequencing depth than AMR gene content. 1 million reads per sample was sufficient to achieve < 1% dissimilarity to the full taxonomic composition. However, at least 80 million reads per sample were required to recover the full richness of different AMR gene families present in the sample, and additional allelic diversity of AMR genes was still being discovered in effluent at 200 million reads per sample. Normalising the number of reads mapping to AMR genes using gene length and an exogenous spike of Thermus thermophilus DNA substantially changed the estimated gene abundance distributions. While the majority of genomic content from cultured isolates from effluent was recoverable using shotgun metagenomics, this was not the case for pig caeca or river sediment.

CONCLUSIONS

Sequencing depth and profiling method can critically affect the profiling of polymicrobial animal and environmental samples with shotgun metagenomics. Both sequencing of cultured isolates and shotgun metagenomics can recover substantial diversity that is not identified using the other methods. Particular consideration is required when inferring AMR gene content or presence by mapping metagenomic reads to a database. ResPipe, the open-source software pipeline we have developed, is freely available ( https://gitlab.com/hsgweon/ResPipe ).

摘要

背景

鸟枪法宏基因组学越来越多地用于表征微生物群落,特别是在不同动物和环境背景下对抗菌素耐药性(AMR)的研究。从鸟枪法宏基因组数据推断复杂群落样本的分类组成和AMR基因含量有许多不同的方法,但对于这些样本,确定最佳测序深度、数据处理和分析方法的工作很少。在本研究中,我们使用鸟枪法宏基因组学和对同一样本中培养分离株的测序来解决这些问题。我们对三个潜在的环境AMR基因库(猪盲肠、河流沉积物、废水)进行采样,并对样本进行高深度(每个样本约2亿条读数)的鸟枪法宏基因组测序。与此同时,我们从同一样本中培养肠杆菌科的单菌落分离株,并使用混合测序(短读长和长读长)创建高质量的组装体,以便与宏基因组数据进行比较。为了实现数据处理自动化,我们开发了一个开源软件管道“ResPipe”。

结果

分类分析对测序深度的稳定性远高于AMR基因含量。每个样本100万条读数足以使与完整分类组成的差异小于1%。然而,每个样本至少需要8000万条读数才能恢复样本中存在的不同AMR基因家族的全部丰富度,并且在每个样本2亿条读数时,仍能在废水中发现AMR基因的额外等位基因多样性。使用基因长度和嗜热栖热菌DNA的外源掺入对映射到AMR基因的读数数量进行归一化,显著改变了估计的基因丰度分布。虽然使用鸟枪法宏基因组学可以从废水中培养的分离株中回收大部分基因组内容,但猪盲肠或河流沉积物并非如此。

结论

测序深度和分析方法会严重影响用鸟枪法宏基因组学对多微生物动物和环境样本的分析。培养分离株的测序和鸟枪法宏基因组学都可以发现大量用其他方法未识别的多样性。通过将宏基因组读数映射到数据库来推断AMR基因含量或存在时,需要特别考虑。我们开发的开源软件管道ResPipe可免费获取(https://gitlab.com/hsgweon/ResPipe )。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90c5/8204541/c1f15fe05349/40793_2019_347_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验