Schroeder Jessica, Suh Jina, Wilks Chelsey, Czerwinski Mary, Munson Sean A, Fogarty James, Althoff Tim
University of Washington.
University of Washington, Microsoft Research.
Int Conf Pervasive Comput Technol Healthc. 2020 May;2020:274-287. doi: 10.1145/3421937.3421975.
Mobile mental health interventions have the potential to reduce barriers and increase engagement in psychotherapy. However, most current tools fail to meet evidence-based principles. In this paper, we describe data-driven design implications for translating evidence-based interventions into mobile apps. To develop these design implications, we analyzed data from a month-long field study of an app designed to support dialectical behavioral therapy, a psychotherapy that aims to teach concrete coping skills to help people better manage their mental health. We investigated whether particular skills are more or less effective in reducing distress or emotional intensity. We also characterized how an individual's disorders, characteristics, and preferences may correlate with skill effectiveness, as well as how skill-level improvements correlate with study-wide changes in depressive symptoms. We then developed a model to predict skill effectiveness. Based on our findings, we present design implications that emphasize the importance of considering different environmental, emotional, and personal contexts. Finally, we discuss promising future opportunities for mobile apps to better support evidence-based psychotherapies, including using machine learning algorithms to develop personalized and context-aware skill recommendations.
移动心理健康干预措施有潜力减少障碍并提高心理治疗的参与度。然而,当前大多数工具都不符合循证原则。在本文中,我们描述了将循证干预措施转化为移动应用程序时数据驱动的设计启示。为了得出这些设计启示,我们分析了一项为期一个月的实地研究数据,该研究针对一款旨在支持辩证行为疗法的应用程序,辩证行为疗法是一种心理治疗方法,旨在教授具体的应对技巧,帮助人们更好地管理自己的心理健康。我们研究了特定技巧在减轻痛苦或情绪强度方面的效果是更好还是更差。我们还描述了个体的病症、特征和偏好如何与技巧效果相关联,以及技巧水平的提高如何与全研究范围内抑郁症状的变化相关联。然后,我们开发了一个模型来预测技巧效果。基于我们的研究结果,我们提出了设计启示,强调了考虑不同环境、情绪和个人背景的重要性。最后,我们讨论了移动应用程序在更好地支持循证心理治疗方面的未来前景,包括使用机器学习算法来开发个性化和情境感知的技巧推荐。