Suppr超能文献

发现全身感光阵列在成年动物中成熟,并介导与眼睛和大脑无关的运动和觉醒。

Discovery of a body-wide photosensory array that matures in an adult-like animal and mediates eye-brain-independent movement and arousal.

机构信息

Institute for Stem Cell Science and Regenerative Medicine, 560065 Bangalore, India.

School of Chemical and Biotechnology (SCBT), Shanmugha Arts, Science, Technology & Research Academy (SASTRA) University, 613401 Thanjavur, India.

出版信息

Proc Natl Acad Sci U S A. 2021 May 18;118(20). doi: 10.1073/pnas.2021426118.

Abstract

The ability to respond to light has profoundly shaped life. Animals with eyes overwhelmingly rely on their visual circuits for mediating light-induced coordinated movements. Building on previously reported behaviors, we report the discovery of an organized, eye-independent (extraocular), body-wide photosensory framework that allows even a head-removed animal to move like an intact animal. Despite possessing sensitive cerebral eyes and a centralized brain that controls most behaviors, head-removed planarians show acute, coordinated ultraviolet-A (UV-A) aversive phototaxis. We find this eye-brain-independent phototaxis is mediated by two noncanonical rhabdomeric opsins, the first known function for this newly classified opsin-clade. We uncover a unique array of dual-opsin-expressing photoreceptor cells that line the periphery of animal body, are proximal to a body-wide nerve net, and mediate UV-A phototaxis by engaging multiple modes of locomotion. Unlike embryonically developing cerebral eyes that are functional when animals hatch, the body-wide photosensory array matures postembryonically in "adult-like animals." Notably, apart from head-removed phototaxis, the body-wide, extraocular sensory organization also impacts physiology of intact animals. Low-dose UV-A, but not visible light (ocular-stimulus), is able to arouse intact worms that have naturally cycled to an inactive/rest-like state. This wavelength selective, low-light arousal of resting animals is noncanonical-opsin dependent but eye independent. Our discovery of an autonomous, multifunctional, late-maturing, organized body-wide photosensory system establishes a paradigm in sensory biology and evolution of light sensing.

摘要

对光的反应能力深刻地塑造了生命。具有眼睛的动物压倒性地依赖其视觉回路来介导光诱导的协调运动。基于之前报道的行为,我们报告了一种有组织的、与眼睛无关(眼外)的全身光感觉框架的发现,即使是无头动物也能像完整动物一样移动。尽管具有敏感的脑眼和控制大多数行为的集中化大脑,无头扁形动物表现出急性、协调的紫外线-A(UV-A)回避趋光性。我们发现这种眼-脑无关的趋光性是由两个非典型的视蛋白介导的,这是这个新分类的视蛋白家族的第一个已知功能。我们发现了一组独特的双视蛋白表达的感光细胞,这些细胞排列在动物身体的外围,靠近全身神经网,通过参与多种运动模式来介导 UV-A 趋光性。与孵化时具有功能的胚胎发育的脑眼不同,全身光感觉阵列在“成年样动物”中在后胚胎期成熟。值得注意的是,除了无头趋光性外,全身眼外感觉组织还影响完整动物的生理学。低剂量的 UV-A,但不是可见光(眼刺激),能够唤醒自然进入不活跃/休息状态的完整蠕虫。这种波长选择性的、低光唤醒休眠动物是不依赖于经典视蛋白但依赖于眼外的。我们发现的自主的、多功能的、成熟较晚的、组织良好的全身光感觉系统在感觉生物学和光感觉的进化中确立了一个范例。

相似文献

2
Photokinesis and Djopsin gene expression analysis during the regeneration of planarian eyes.
Integr Zool. 2017 Mar;12(2):157-164. doi: 10.1111/1749-4877.12234.
4
The planarian homolog mediates extraocular behavioral responses to near-ultraviolet light.
J Exp Biol. 2017 Jul 15;220(Pt 14):2616-2625. doi: 10.1242/jeb.152298. Epub 2017 May 11.
5
Vertebrate ancient opsin and melanopsin: divergent irradiance detectors.
Photochem Photobiol Sci. 2010 Nov;9(11):1444-57. doi: 10.1039/c0pp00203h. Epub 2010 Oct 5.
7
Expression dynamics and protein localization of rhabdomeric opsins in Platynereis larvae.
Integr Comp Biol. 2013 Jul;53(1):7-16. doi: 10.1093/icb/ict046. Epub 2013 May 10.
10
Ocular and extraocular expression of opsins in the rhopalium of Tripedalia cystophora (Cnidaria: Cubozoa).
PLoS One. 2014 Jun 5;9(6):e98870. doi: 10.1371/journal.pone.0098870. eCollection 2014.

引用本文的文献

1
Light in the Darkness: Responses to Light and Diel Activity Rhythm in an Eyeless Cave Flatworm ().
Ecol Evol. 2025 Jun 18;15(6):e71584. doi: 10.1002/ece3.71584. eCollection 2025 Jun.
2
Neuropeptide-mediated temporal sensory filtering in a primordial nervous system.
bioRxiv. 2024 Dec 17:2024.12.17.628859. doi: 10.1101/2024.12.17.628859.
3
Reduced adult stem cell fate specification led to eye reduction in cave planarians.
Nat Commun. 2025 Jan 2;16(1):304. doi: 10.1038/s41467-024-54478-6.
4
Adaptive robustness through incoherent signaling mechanisms in a regenerative brain.
Cell Rep. 2024 Aug 27;43(8):114580. doi: 10.1016/j.celrep.2024.114580. Epub 2024 Aug 11.
5
Photobehaviours guided by simple photoreceptor systems.
Anim Cogn. 2023 Nov;26(6):1817-1835. doi: 10.1007/s10071-023-01818-6. Epub 2023 Aug 31.
6
Characterization of the planarian surface electroencephalogram.
BMC Neurosci. 2023 May 3;24(1):29. doi: 10.1186/s12868-023-00799-z.
7
Persistence of Nocturnality in Decapitated and Bisected Flatworms.
J Biol Rhythms. 2023 Jun;38(3):269-277. doi: 10.1177/07487304231158947. Epub 2023 Mar 24.
8
Why study sleep in flatworms?
J Comp Physiol B. 2024 Jun;194(3):233-239. doi: 10.1007/s00360-023-01480-x. Epub 2023 Mar 11.
9
Head removal enhances planarian electrotaxis.
J Exp Biol. 2022 Sep 1;225(17). doi: 10.1242/jeb.243972. Epub 2022 Sep 7.
10
Regeneration of Planarian Auricles and Reestablishment of Chemotactic Ability.
Front Cell Dev Biol. 2021 Nov 26;9:777951. doi: 10.3389/fcell.2021.777951. eCollection 2021.

本文引用的文献

1
Exceptional diversity of opsin expression patterns in (Stomatopoda) retinas.
Proc Natl Acad Sci U S A. 2020 Apr 21;117(16):8948-8957. doi: 10.1073/pnas.1917303117. Epub 2020 Apr 2.
2
Expression of extraocular genes and light-dependent basal activity of blind cavefish.
PeerJ. 2019 Dec 17;7:e8148. doi: 10.7717/peerj.8148. eCollection 2019.
3
Extraocular, rod-like photoreceptors in a flatworm express xenopsin photopigment.
Elife. 2019 Oct 22;8:e45465. doi: 10.7554/eLife.45465.
5
Exploring phylogeny to find the function of sleep.
Nat Rev Neurosci. 2019 Feb;20(2):109-116. doi: 10.1038/s41583-018-0098-9.
6
A Comparative Perspective on Extra-retinal Photoreception.
Trends Endocrinol Metab. 2019 Jan;30(1):39-53. doi: 10.1016/j.tem.2018.10.005. Epub 2018 Dec 4.
8
Light Affects Mood and Learning through Distinct Retina-Brain Pathways.
Cell. 2018 Sep 20;175(1):71-84.e18. doi: 10.1016/j.cell.2018.08.004. Epub 2018 Aug 30.
9
Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics.
Science. 2018 May 25;360(6391). doi: 10.1126/science.aaq1723. Epub 2018 Apr 19.
10
Cell type transcriptome atlas for the planarian .
Science. 2018 May 25;360(6391). doi: 10.1126/science.aaq1736. Epub 2018 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验