National Creative Research Initiative Center for Hologenomics and School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
Nature. 2021 May;593(7860):570-574. doi: 10.1038/s41586-021-03522-2. Epub 2021 May 5.
A balanced intake of macronutrients-protein, carbohydrate and fat-is essential for the well-being of organisms. An adequate calorific intake but with insufficient protein consumption can lead to several ailments, including kwashiorkor. Taste receptors (T1R1-T1R3) can detect amino acids in the environment, and cellular sensors (Gcn2 and Tor) monitor the levels of amino acids in the cell. When deprived of dietary protein, animals select a food source that contains a greater proportion of protein or essential amino acids (EAAs). This suggests that food selection is geared towards achieving the target amount of a particular macronutrient with assistance of the EAA-specific hunger-driven response, which is poorly understood. Here we show in Drosophila that a microbiome-gut-brain axis detects a deficit of EAAs and stimulates a compensatory appetite for EAAs. We found that the neuropeptide CNMamide (CNMa) was highly induced in enterocytes of the anterior midgut during protein deprivation. Silencing of the CNMa-CNMa receptor axis blocked the EAA-specific hunger-driven response in deprived flies. Furthermore, gnotobiotic flies bearing an EAA-producing symbiotic microbiome exhibited a reduced appetite for EAAs. By contrast, gnotobiotic flies with a mutant microbiome that did not produce leucine or other EAAs showed higher expression of CNMa and a greater compensatory appetite for EAAs. We propose that gut enterocytes sense the levels of diet- and microbiome-derived EAAs and communicate the EAA-deprived condition to the brain through CNMa.
宏量营养素(蛋白质、碳水化合物和脂肪)的均衡摄入对于生物体的健康至关重要。足够的热量摄入但蛋白质摄入不足会导致多种疾病,包括夸希奥科病。味觉受体(T1R1-T1R3)可以检测环境中的氨基酸,而细胞传感器(Gcn2 和 Tor)监测细胞中氨基酸的水平。当动物缺乏膳食蛋白质时,它们会选择含有更高比例蛋白质或必需氨基酸(EAA)的食物来源。这表明食物选择是为了在 EAA 特异性饥饿驱动反应的帮助下实现特定宏量营养素的目标量,而这种反应还不太清楚。在这里,我们在果蝇中表明,微生物组-肠道-大脑轴检测到 EAA 的缺乏,并刺激对 EAA 的代偿性食欲。我们发现,在蛋白质剥夺期间,前中肠的肠细胞中高度诱导了神经肽 CNMamide(CNMa)。沉默 CNMa-CNMa 受体轴会阻止饥饿驱动的 EAA 特异性反应。此外,携带产生 EAA 的共生微生物组的无菌果蝇表现出对 EAA 的食欲降低。相比之下,携带不能产生亮氨酸或其他 EAA 的突变微生物组的无菌果蝇表现出更高的 CNMa 表达和对 EAA 的更大代偿性食欲。我们提出,肠道肠细胞感知饮食和微生物组衍生的 EAA 的水平,并通过 CNMa 将 EAA 缺乏的情况传达给大脑。