Suppr超能文献

基于深度学习的蛋白质结构预测中实值距离预测的研究。

Study of real-valued distance prediction for protein structure prediction with deep learning.

作者信息

Li Jin, Xu Jinbo

机构信息

Toyota Technological Institute at Chicago, Chicago, IL 60637, USA.

Department of Computer Science, University of Chicago, Chicago, IL 60637, USA.

出版信息

Bioinformatics. 2021 Oct 11;37(19):3197-3203. doi: 10.1093/bioinformatics/btab333.

Abstract

MOTIVATION

Inter-residue distance prediction by convolutional residual neural network (deep ResNet) has greatly advanced protein structure prediction. Currently, the most successful structure prediction methods predict distance by discretizing it into dozens of bins. Here, we study how well real-valued distance can be predicted and how useful it is for 3D structure modeling by comparing it with discrete-valued prediction based upon the same deep ResNet.

RESULTS

Different from the recent methods that predict only a single real value for the distance of an atom pair, we predict both the mean and standard deviation of a distance and then fold a protein by the predicted mean and deviation. Our findings include: (i) tested on the CASP13 FM (free-modeling) targets, our real-valued distance prediction obtains 81% precision on top L/5 long-range contact prediction, much better than the best CASP13 results (70%); (ii) our real-valued prediction can predict correct folds for the same number of CASP13 FM targets as the best CASP13 group, despite generating only 20 decoys for each target; (iii) our method greatly outperforms a very new real-valued prediction method DeepDist in both contact prediction and 3D structure modeling and (iv) when the same deep ResNet is used, our real-valued distance prediction has 1-6% higher contact and distance accuracy than our own discrete-valued prediction, but less accurate 3D structure models.

AVAILABILITY AND IMPLEMENTATION

https://github.com/j3xugit/RaptorX-3DModeling.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

通过卷积残差神经网络(深度残差网络)进行残基间距离预测极大地推动了蛋白质结构预测的发展。目前,最成功的结构预测方法通过将距离离散化为几十个区间来预测距离。在此,我们通过将基于相同深度残差网络的实值距离预测与离散值预测进行比较,研究实值距离的预测效果以及它对三维结构建模的有用性。

结果

与近期仅预测原子对距离单一实值的方法不同,我们预测距离的均值和标准差,然后根据预测的均值和标准差对蛋白质进行折叠。我们的研究结果包括:(i)在CASP13 FM(自由建模)目标上进行测试时,我们的实值距离预测在顶级L/5长程接触预测上获得了81%的精度,远优于最佳的CASP13结果(70%);(ii)我们的实值预测能够为与最佳CASP13团队相同数量的CASP13 FM目标预测出正确的折叠结构,尽管每个目标仅生成20个诱饵结构;(iii)在接触预测和三维结构建模方面,我们的方法都大大优于一种非常新的实值预测方法DeepDist;(iv)当使用相同的深度残差网络时,我们的实值距离预测在接触和距离准确性方面比我们自己的离散值预测高1 - 6%,但三维结构模型的准确性较低。

可用性与实现

https://github.com/j3xugit/RaptorX-3DModeling。

补充信息

补充数据可在《生物信息学》在线获取。

相似文献

1
Study of real-valued distance prediction for protein structure prediction with deep learning.
Bioinformatics. 2021 Oct 11;37(19):3197-3203. doi: 10.1093/bioinformatics/btab333.
2
Analysis of distance-based protein structure prediction by deep learning in CASP13.
Proteins. 2019 Dec;87(12):1069-1081. doi: 10.1002/prot.25810. Epub 2019 Sep 13.
3
DeepDist: real-value inter-residue distance prediction with deep residual convolutional network.
BMC Bioinformatics. 2021 Jan 25;22(1):30. doi: 10.1186/s12859-021-03960-9.
4
Improved Protein Real-Valued Distance Prediction Using Deep Residual Dense Network (DRDN).
Protein J. 2022 Oct;41(4-5):468-476. doi: 10.1007/s10930-022-10067-4. Epub 2022 Aug 25.
5
Improving deep learning-based protein distance prediction in CASP14.
Bioinformatics. 2021 Oct 11;37(19):3190-3196. doi: 10.1093/bioinformatics/btab355.
6
Predicting the Real-Valued Inter-Residue Distances for Proteins.
Adv Sci (Weinh). 2020 Aug 10;7(19):2001314. doi: 10.1002/advs.202001314. eCollection 2020 Oct.
7
New Labeling Methods for Deep Learning Real-Valued Inter-Residue Distance Prediction.
IEEE/ACM Trans Comput Biol Bioinform. 2022 Nov-Dec;19(6):3586-3594. doi: 10.1109/TCBB.2021.3115053. Epub 2022 Dec 8.
8
Improving protein tertiary structure prediction by deep learning and distance prediction in CASP14.
Proteins. 2022 Jan;90(1):58-72. doi: 10.1002/prot.26186. Epub 2021 Jul 27.
9
Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
PLoS Comput Biol. 2017 Jan 5;13(1):e1005324. doi: 10.1371/journal.pcbi.1005324. eCollection 2017 Jan.
10
Improved protein structure prediction by deep learning irrespective of co-evolution information.
Nat Mach Intell. 2021 Jul;3:601-609. doi: 10.1038/s42256-021-00348-5. Epub 2021 May 20.

引用本文的文献

1
Freeprotmap: waiting-free prediction method for protein distance map.
BMC Bioinformatics. 2024 May 4;25(1):176. doi: 10.1186/s12859-024-05771-0.
2
Inter-Residue Distance Prediction From Duet Deep Learning Models.
Front Genet. 2022 May 16;13:887491. doi: 10.3389/fgene.2022.887491. eCollection 2022.
3
Enhancing protein inter-residue real distance prediction by scrutinising deep learning models.
Sci Rep. 2022 Jan 17;12(1):787. doi: 10.1038/s41598-021-04441-y.
5
Deep Learning-Based Advances in Protein Structure Prediction.
Int J Mol Sci. 2021 May 24;22(11):5553. doi: 10.3390/ijms22115553.
6
Recent Advances in Protein Homology Detection Propelled by Inter-Residue Interaction Map Threading.
Front Mol Biosci. 2021 May 11;8:643752. doi: 10.3389/fmolb.2021.643752. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验