Suppr超能文献

基于深度学习的蛋白质结构预测进展。

Deep Learning-Based Advances in Protein Structure Prediction.

机构信息

Department of Electrical Engineering and Computer Science, Wichita State University, Wichita, KS 67260, USA.

Department of Computer Science, University of Missouri-St. Louis, St. Louis, MO 63121, USA.

出版信息

Int J Mol Sci. 2021 May 24;22(11):5553. doi: 10.3390/ijms22115553.

Abstract

Obtaining an accurate description of protein structure is a fundamental step toward understanding the underpinning of biology. Although recent advances in experimental approaches have greatly enhanced our capabilities to experimentally determine protein structures, the gap between the number of protein sequences and known protein structures is ever increasing. Computational protein structure prediction is one of the ways to fill this gap. Recently, the protein structure prediction field has witnessed a lot of advances due to Deep Learning (DL)-based approaches as evidenced by the success of AlphaFold2 in the most recent Critical Assessment of protein Structure Prediction (CASP14). In this article, we highlight important milestones and progresses in the field of protein structure prediction due to DL-based methods as observed in CASP experiments. We describe advances in various steps of protein structure prediction pipeline viz. protein contact map prediction, protein distogram prediction, protein real-valued distance prediction, and Quality Assessment/refinement. We also highlight some end-to-end DL-based approaches for protein structure prediction approaches. Additionally, as there have been some recent DL-based advances in protein structure determination using Cryo-Electron (Cryo-EM) microscopy based, we also highlight some of the important progress in the field. Finally, we provide an outlook and possible future research directions for DL-based approaches in the protein structure prediction arena.

摘要

获得蛋白质结构的准确描述是理解生物学基础的基本步骤。尽管最近实验方法的进步极大地提高了我们实验确定蛋白质结构的能力,但已知蛋白质结构与蛋白质序列数量之间的差距仍在不断扩大。计算蛋白质结构预测是填补这一空白的方法之一。最近,由于基于深度学习(DL)的方法,蛋白质结构预测领域取得了许多进展,这从 AlphaFold2 在最近的蛋白质结构预测关键评估(CASP14)中的成功中可见一斑。在本文中,我们重点介绍了由于基于 DL 的方法在 CASP 实验中观察到的蛋白质结构预测领域的重要里程碑和进展。我们描述了蛋白质结构预测管道各个步骤的进展,如蛋白质接触图预测、蛋白质分布预测、蛋白质实值距离预测和质量评估/细化。我们还重点介绍了一些用于蛋白质结构预测的端到端基于 DL 的方法。此外,由于最近在使用基于冷冻电子显微镜(Cryo-EM)的方法进行蛋白质结构测定方面取得了一些基于 DL 的进展,我们还重点介绍了该领域的一些重要进展。最后,我们对基于 DL 的方法在蛋白质结构预测领域的前景和可能的未来研究方向进行了展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ed4/8197379/0dbcf8c8dd85/ijms-22-05553-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验