Suppr超能文献

冷冻电镜:甲状腺生物学的新纪元。

Cryo-EM: A new dawn in thyroid biology.

机构信息

MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK; Human Technopole, Via Cristina Belgioioso 171, 20157, Milano, Italy.

University of Ljubljana, Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, Vrazov Trg 2, 1000, Ljubljana, Slovenia.

出版信息

Mol Cell Endocrinol. 2021 Jul 1;531:111309. doi: 10.1016/j.mce.2021.111309. Epub 2021 May 5.

Abstract

The thyroid gland accumulates the rare dietary element iodine and incorporates it into iodinated thyroid hormones, utilising several tightly regulated reactions and molecular mechanisms. Thyroid hormones are essential in vertebrates and play a central role in many biological processes, such as development, thermogenesis and growth. The control of these functions is exerted through the binding of hormones to nuclear thyroid hormone receptors that rule the transcription of numerous metabolic genes. Over the last 50 years, thyroid biology has been studied extensively at the cellular and organismal levels, revealing its multiple clinical implications, yet, a complete molecular understanding is still lacking. This includes the atomic structures of crucial pathway components that would be needed to elucidate molecular mechanisms. Here we review the currently known protein structures involved in thyroid hormone synthesis, regulation, transport, and actions. We also highlight targets for future investigations that will significantly benefit from recent advances in macromolecular structure determination by electron cryo-microscopy (cryo-EM). As an example, we demonstrate how cryo-EM was crucial to obtain the structure of the large thyroid hormone precursor protein, thyroglobulin. We discuss modern cryo-EM compared to other structure determination methods and how an integrated structural and cell biological approach will help filling the molecular knowledge gap in our understanding of thyroid hormone metabolism. Together with clinical, cellular and high-throughput 'omics' studies, atomic structures of thyroid components will provide an important framework to map disease mutations and to interpret and predict thyroid phenotypes.

摘要

甲状腺积累了罕见的饮食元素碘,并将其纳入碘化甲状腺激素中,利用几种严格调控的反应和分子机制。甲状腺激素在脊椎动物中是必不可少的,在许多生物学过程中发挥着核心作用,如发育、生热和生长。这些功能的控制是通过激素与核甲状腺激素受体的结合来实现的,这些受体控制着许多代谢基因的转录。在过去的 50 年里,甲状腺生物学在细胞和机体水平上得到了广泛的研究,揭示了其多种临床意义,但仍缺乏完整的分子理解。这包括关键途径成分的原子结构,这些结构对于阐明分子机制是必要的。在这里,我们回顾了目前已知的参与甲状腺激素合成、调节、运输和作用的蛋白质结构。我们还强调了未来研究的目标,这些目标将从电子冷冻显微镜(cryo-EM)在大分子结构测定方面的最新进展中显著受益。作为一个例子,我们展示了 cryo-EM 如何对获得甲状腺激素前体蛋白甲状腺球蛋白的结构至关重要。我们讨论了现代 cryo-EM 与其他结构测定方法的比较,以及综合结构和细胞生物学方法将如何有助于填补我们对甲状腺激素代谢理解中的分子知识空白。与临床、细胞和高通量"组学"研究一起,甲状腺成分的原子结构将为映射疾病突变、解释和预测甲状腺表型提供一个重要框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验