Suppr超能文献

色素适应传感器 RcaE 的原初发色团的绿/红光光循环的结构基础。

Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE.

机构信息

Synchrotron Radiation Research Center, Nagoya University, Nagoya 464-8603, Japan.

Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan;

出版信息

Proc Natl Acad Sci U S A. 2021 May 18;118(20). doi: 10.1073/pnas.2024583118.

Abstract

Cyanobacteriochromes (CBCRs) are bilin-binding photosensors of the phytochrome superfamily that show remarkable spectral diversity. The green/red CBCR subfamily is important for regulating chromatic acclimation of photosynthetic antenna in cyanobacteria and is applied for optogenetic control of gene expression in synthetic biology. It is suggested that the absorption change of this subfamily is caused by the bilin C15/C15- photoisomerization and a subsequent change in the bilin protonation state. However, structural information and direct evidence of the bilin protonation state are lacking. Here, we report a high-resolution (1.63Å) crystal structure of the bilin-binding domain of the chromatic acclimation sensor RcaE in the red-absorbing photoproduct state. The bilin is buried within a "bucket" consisting of hydrophobic residues, in which the bilin configuration/conformation is C5-,/C10-,/C15-, with the A- through C-rings coplanar and the D-ring tilted. Three pyrrole nitrogens of the A- through C-rings are covered in the α-face with a hydrophobic lid of Leu249 influencing the bilin p, whereas they are directly hydrogen bonded in the β-face with the carboxyl group of Glu217. Glu217 is further connected to a cluster of waters forming a hole in the bucket, which are in exchange with solvent waters in molecular dynamics simulation. We propose that the "leaky bucket" structure functions as a proton exit/influx pathway upon photoconversion. NMR analysis demonstrated that the four pyrrole nitrogen atoms are indeed fully protonated in the red-absorbing state, but one of them, most likely the B-ring nitrogen, is deprotonated in the green-absorbing state. These findings deepen our understanding of the diverse spectral tuning mechanisms present in CBCRs.

摘要

藻胆体(CBCRs)是植物色素超家族的双吡咯结合光感受器,具有显著的光谱多样性。绿色/红色 CBCR 亚家族对于调节蓝藻光合作用天线的色适应很重要,并且在合成生物学中用于光遗传学控制基因表达。有人提出,该亚家族的吸收变化是由双吡咯 C15/C15-光异构化和随后的双吡咯质子化状态变化引起的。然而,缺乏双吡咯质子化状态的结构信息和直接证据。在这里,我们报告了在高分辨率(1.63Å)晶体结构中的色适应传感器 RcaE 的双吡咯结合域在红色吸收光产物状态下的结构。双吡咯被埋在由疏水性残基组成的“桶”中,其中双吡咯的构型/构象为 C5-,/C10-,/C15-,A- 至 C-环共面,D-环倾斜。A- 至 C-环的三个吡咯氮原子在α-面上被疏水性的 Leu249 覆盖,影响双吡咯的 p,而在β-面上它们直接与 Glu217 的羧基形成氢键。Glu217 进一步与一组形成桶中孔的水分子相连,在分子动力学模拟中,这些水分子与溶剂水进行交换。我们提出,“漏桶”结构在光转化过程中充当质子进出的途径。NMR 分析表明,在红色吸收状态下,四个吡咯氮原子确实完全质子化,但其中一个,很可能是 B-环氮原子,在绿色吸收状态下去质子化。这些发现加深了我们对 CBCRs 中存在的多种光谱调谐机制的理解。

相似文献

1
Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE.
Proc Natl Acad Sci U S A. 2021 May 18;118(20). doi: 10.1073/pnas.2024583118.
2
Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle.
Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):4974-9. doi: 10.1073/pnas.1302909110. Epub 2013 Mar 11.
4
Green/red light-sensing mechanism in the chromatic acclimation photosensor.
Sci Adv. 2024 Jun 14;10(24):eadn8386. doi: 10.1126/sciadv.adn8386. Epub 2024 Jun 12.
6
Raman Spectroscopy of an Atypical C15-, Bilin Chromophore in Cyanobacteriochrome RcaE.
J Phys Chem B. 2022 Feb 3;126(4):813-821. doi: 10.1021/acs.jpcb.1c09652. Epub 2022 Jan 25.
10
Protochromic absorption changes in the two-cysteine photocycle of a blue/orange cyanobacteriochrome.
J Biol Chem. 2019 Dec 6;294(49):18909-18922. doi: 10.1074/jbc.RA119.010384. Epub 2019 Oct 24.

引用本文的文献

1
Distinct Protochromic Mechanisms Driving Green/Red Absorption in Phycocyanobilin-Binding Proteins.
Biochemistry. 2025 Jul 1;64(13):2823-2833. doi: 10.1021/acs.biochem.4c00870. Epub 2025 Jun 18.
2
High Fluorescence of Phytochromes Does Not Require Chromophore Protonation.
Molecules. 2024 Oct 19;29(20):4948. doi: 10.3390/molecules29204948.
3
Direct evidence for a deprotonated lysine serving as a H-bond "acceptor" in a photoreceptor protein.
Proc Natl Acad Sci U S A. 2024 Sep 3;121(36):e2404472121. doi: 10.1073/pnas.2404472121. Epub 2024 Aug 27.
4
Molecular origins of absorption wavelength variation among phycocyanobilin-binding proteins.
Biophys J. 2024 Oct 1;123(19):3375-3385. doi: 10.1016/j.bpj.2024.08.001. Epub 2024 Aug 8.
5
Green/red light-sensing mechanism in the chromatic acclimation photosensor.
Sci Adv. 2024 Jun 14;10(24):eadn8386. doi: 10.1126/sciadv.adn8386. Epub 2024 Jun 12.
6
Cyanobacteriochromes: A Rainbow of Photoreceptors.
Annu Rev Microbiol. 2024 Nov;78(1):61-81. doi: 10.1146/annurev-micro-041522-094613. Epub 2024 Nov 7.
8
Light- and pH-dependent structural changes in cyanobacteriochrome AnPixJg2.
Photochem Photobiol Sci. 2022 Apr;21(4):447-469. doi: 10.1007/s43630-022-00204-4. Epub 2022 Apr 8.
9
Enhancing the Inhomogeneous Photodynamics of Canonical Bacteriophytochrome.
J Phys Chem B. 2022 Apr 14;126(14):2647-2657. doi: 10.1021/acs.jpcb.2c00131. Epub 2022 Mar 31.
10
Spectroscopic approach for exploring structure and function of photoreceptor proteins.
Biophys Physicobiol. 2021 May 14;18:127-130. doi: 10.2142/biophysico.bppb-v18.014. eCollection 2021.

本文引用的文献

2
Color Sensing and Signal Transmission Diversity of Cyanobacterial Phytochromes and Cyanobacteriochromes.
Mol Cells. 2020 Jun 30;43(6):509-516. doi: 10.14348/molcells.2020.0077.
3
Spectral and photochemical diversity of tandem cysteine cyanobacterial phytochromes.
J Biol Chem. 2020 May 8;295(19):6754-6766. doi: 10.1074/jbc.RA120.012950. Epub 2020 Mar 17.
4
Blue-/Green-Light-Responsive Cyanobacteriochromes Are Cell Shade Sensors in Red-Light Replete Niches.
iScience. 2020 Mar 27;23(3):100936. doi: 10.1016/j.isci.2020.100936. Epub 2020 Feb 25.
5
Structural elements regulating the photochromicity in a cyanobacteriochrome.
Proc Natl Acad Sci U S A. 2020 Feb 4;117(5):2432-2440. doi: 10.1073/pnas.1910208117. Epub 2020 Jan 21.
6
Protochromic absorption changes in the two-cysteine photocycle of a blue/orange cyanobacteriochrome.
J Biol Chem. 2019 Dec 6;294(49):18909-18922. doi: 10.1074/jbc.RA119.010384. Epub 2019 Oct 24.
7
Structural basis of molecular logic OR in a dual-sensor histidine kinase.
Proc Natl Acad Sci U S A. 2019 Oct 1;116(40):19973-19982. doi: 10.1073/pnas.1910855116. Epub 2019 Sep 16.
8
Chromatic Acclimation in Cyanobacteria: A Diverse and Widespread Process for Optimizing Photosynthesis.
Annu Rev Microbiol. 2019 Sep 8;73:407-433. doi: 10.1146/annurev-micro-020518-115738.
9
Optogenetic control of Bacillus subtilis gene expression.
Nat Commun. 2019 Jul 15;10(1):3099. doi: 10.1038/s41467-019-10906-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验