Suppr超能文献

脯氨酸密码子对的选择决定了细菌中核糖体的暂停强度和翻译效率。

Proline codon pair selection determines ribosome pausing strength and translation efficiency in bacteria.

机构信息

Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, München, Germany.

Institute of Genomics, School of Biomedical Sciences, Huaqiao University, Xiamen, China.

出版信息

Commun Biol. 2021 May 17;4(1):589. doi: 10.1038/s42003-021-02115-z.

Abstract

The speed of mRNA translation depends in part on the amino acid to be incorporated into the nascent chain. Peptide bond formation is especially slow with proline and two adjacent prolines can even cause ribosome stalling. While previous studies focused on how the amino acid context of a Pro-Pro motif determines the stalling strength, we extend this question to the mRNA level. Bioinformatics analysis of the Escherichia coli genome revealed significantly differing codon usage between single and consecutive prolines. We therefore developed a luminescence reporter to detect ribosome pausing in living cells, enabling us to dissect the roles of codon choice and tRNA selection as well as to explain the genome scale observations. Specifically, we found a strong selective pressure against CCC/U-C, a sequon causing ribosomal frameshifting even under wild-type conditions. On the other hand, translation efficiency as positive evolutionary driving force led to an overrepresentation of CCG. This codon is not only translated the fastest, but the corresponding prolyl-tRNA reaches almost saturating levels. By contrast, CCA, for which the cognate prolyl-tRNA amounts are limiting, is used to regulate pausing strength. Thus, codon selection both in discrete positions but especially in proline codon pairs can tune protein copy numbers.

摘要

mRNA 翻译的速度部分取决于要掺入新生链的氨基酸。与脯氨酸相比,肽键的形成特别缓慢,两个相邻的脯氨酸甚至可以导致核糖体停顿。虽然之前的研究集中在 Pro-Pro 基序的氨基酸环境如何决定停顿强度,但我们将这个问题扩展到了 mRNA 水平。大肠杆菌基因组的生物信息学分析显示,单个脯氨酸和连续脯氨酸之间的密码子使用有明显差异。因此,我们开发了一种发光报告基因来检测活细胞中的核糖体停顿,使我们能够剖析密码子选择和 tRNA 选择的作用,并解释基因组规模的观察结果。具体来说,我们发现 CCC/U-C 受到强烈的选择压力,即使在野生型条件下,该序列也会导致核糖体移码。另一方面,作为正向进化驱动力的翻译效率导致 CCG 的过度表达。该密码子不仅翻译速度最快,而且对应的脯氨酰-tRNA 达到几乎饱和的水平。相比之下,CCA 用于调节停顿强度,其对应的脯氨酰-tRNA 数量是有限的。因此,密码子选择不仅在离散位置,而且在脯氨酸密码子对中都可以调节蛋白质拷贝数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9386/8129111/8be18d32b1b8/42003_2021_2115_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验