Suppr超能文献

利用可逆荧光探针可视化新型德里金属β-内酰胺酶-1 在细菌中的动态金属化状态。

Visualizing the Dynamic Metalation State of New Delhi Metallo-β-lactamase-1 in Bacteria Using a Reversible Fluorescent Probe.

机构信息

Department of Chemistry, University of Texas at Austin, 105 East 24th Street Stop A5300, Austin, Texas 78712, United States.

Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, United States.

出版信息

J Am Chem Soc. 2021 Jun 9;143(22):8314-8323. doi: 10.1021/jacs.1c00290. Epub 2021 May 26.

Abstract

New Delhi metallo-β-lactamase (NDM) grants resistance to a broad spectrum of β-lactam antibiotics, including last-resort carbapenems, and is emerging as a global antibiotic resistance threat. Limited zinc availability adversely impacts the ability of NDM-1 to provide resistance, but a number of clinical variants have emerged that are more resistant to zinc scarcity (e.g., NDM-15). To provide a novel tool to better study metal ion sequestration in host-pathogen interactions, we describe the development of a fluorescent probe that reports on the dynamic metalation state of NDM within . The thiol-containing probe selectively coordinates the dizinc metal cluster of NDM and results in a 17-fold increase in fluorescence intensity. Reversible binding enables competition and time-dependent studies that reveal fluorescence changes used to detect enzyme localization, substrate and inhibitor engagement, and changes to metalation state through the imaging of live using confocal microscopy. NDM-1 is shown to be susceptible to demetalation by intracellular and extracellular metal chelators in a live-cell model of zinc dyshomeostasis, whereas the NDM-15 metalation state is shown to be more resistant to zinc flux. The development of this reversible turn-on fluorescent probe for the metalation state of NDM provides a new tool for monitoring the impact of metal ion sequestration by host defense mechanisms and for detecting inhibitor-target engagement during the development of therapeutics to counter this resistance determinant.

摘要

新德里金属β-内酰胺酶(NDM)赋予了对广谱β-内酰胺抗生素(包括最后一线的碳青霉烯类抗生素)的耐药性,并且正在成为一种全球抗生素耐药性威胁。锌的有限可用性会对 NDM-1 提供耐药性的能力产生不利影响,但已经出现了许多对锌缺乏更具耐药性的临床变异体(例如,NDM-15)。为了提供一种新的工具来更好地研究宿主-病原体相互作用中的金属离子螯合作用,我们描述了一种荧光探针的开发,该探针可报告 NDM 中的动态金属化状态。含硫醇的探针选择性地与 NDM 的二锌金属簇配位,导致荧光强度增加 17 倍。可逆结合使竞争和时间依赖性研究成为可能,这些研究揭示了荧光变化,用于通过共聚焦显微镜检测酶定位、底物和抑制剂结合以及通过成像活细胞来检测金属化状态的变化。在锌失调的活细胞模型中,NDM-1 被证明易受细胞内和细胞外金属螯合剂的脱金属作用影响,而 NDM-15 的金属化状态对锌通量的抵抗力更强。这种用于 NDM 金属化状态的可逆开启荧光探针的开发为监测宿主防御机制对金属离子螯合作用的影响以及在开发针对这种耐药决定因素的治疗方法时检测抑制剂靶标结合提供了一种新工具。

相似文献

1
Visualizing the Dynamic Metalation State of New Delhi Metallo-β-lactamase-1 in Bacteria Using a Reversible Fluorescent Probe.
J Am Chem Soc. 2021 Jun 9;143(22):8314-8323. doi: 10.1021/jacs.1c00290. Epub 2021 May 26.
2
Benzimidazole and Benzoxazole Zinc Chelators as Inhibitors of Metallo-β-Lactamase NDM-1.
ChemMedChem. 2021 Feb 17;16(4):654-661. doi: 10.1002/cmdc.202000607. Epub 2020 Nov 19.
3
Characterization of purified New Delhi metallo-β-lactamase-1.
Biochemistry. 2011 Nov 22;50(46):10102-13. doi: 10.1021/bi201449r. Epub 2011 Nov 1.
4
5
Structural insights into the design of reversible fluorescent probes for metallo-β-lactamases NDM-1, VIM-2, and IMP-1.
J Inorg Biochem. 2022 Aug;233:111869. doi: 10.1016/j.jinorgbio.2022.111869. Epub 2022 May 20.
6
Clinical Variants of New Delhi Metallo-β-Lactamase Are Evolving To Overcome Zinc Scarcity.
ACS Infect Dis. 2017 Dec 8;3(12):927-940. doi: 10.1021/acsinfecdis.7b00128. Epub 2017 Oct 11.
8
Discovery of environment-sensitive fluorescent probes for detecting and inhibiting metallo-β-lactamase.
Bioorg Chem. 2022 Nov;128:106048. doi: 10.1016/j.bioorg.2022.106048. Epub 2022 Jul 30.
10
Enzyme Inhibitors: The Best Strategy to Tackle Superbug NDM-1 and Its Variants.
Int J Mol Sci. 2021 Dec 24;23(1):197. doi: 10.3390/ijms23010197.

引用本文的文献

1
Proteomic strategies to interrogate the Fe-S proteome.
Biochim Biophys Acta Mol Cell Res. 2024 Oct;1871(7):119791. doi: 10.1016/j.bbamcr.2024.119791. Epub 2024 Jun 25.
2
Probing metalloenzyme dynamics in living systems: Contemporary advances in fluorescence imaging tools and applications.
Curr Opin Chem Biol. 2024 Aug;81:102475. doi: 10.1016/j.cbpa.2024.102475. Epub 2024 Jun 8.
3
High-level nitrofurantoin resistance in a clinical isolate of a comparative genomics and metabolomics analysis.
mSystems. 2024 Jan 23;9(1):e0097223. doi: 10.1128/msystems.00972-23. Epub 2023 Dec 11.
4
Metalloprotein enabled redox signal transduction in microbes.
Curr Opin Chem Biol. 2023 Oct;76:102331. doi: 10.1016/j.cbpa.2023.102331. Epub 2023 Jun 11.
5
Exploring antibiotic resistance with chemical tools.
Chem Commun (Camb). 2023 May 18;59(41):6148-6158. doi: 10.1039/d3cc00759f.
6
Recent Progress in Identifying Bacteria with Fluorescent Probes.
Molecules. 2022 Sep 29;27(19):6440. doi: 10.3390/molecules27196440.
7
Binding of Dual-Function Hybridized MetalOrganic Capsules to Enzymes for Cascade Catalysis.
JACS Au. 2022 Jul 6;2(7):1736-1746. doi: 10.1021/jacsau.2c00322. eCollection 2022 Jul 25.
8
Structural insights into the design of reversible fluorescent probes for metallo-β-lactamases NDM-1, VIM-2, and IMP-1.
J Inorg Biochem. 2022 Aug;233:111869. doi: 10.1016/j.jinorgbio.2022.111869. Epub 2022 May 20.
9
Metallo-β-lactamases and a tug-of-war for the available zinc at the host-pathogen interface.
Curr Opin Chem Biol. 2022 Feb;66:102103. doi: 10.1016/j.cbpa.2021.102103. Epub 2021 Dec 2.

本文引用的文献

1
Structure-guided optimization of D-captopril for discovery of potent NDM-1 inhibitors.
Bioorg Med Chem. 2021 Jan 1;29:115902. doi: 10.1016/j.bmc.2020.115902. Epub 2020 Dec 3.
2
Probing the mechanisms of inhibition for various inhibitors of metallo-β-lactamases VIM-2 and NDM-1.
J Inorg Biochem. 2020 Sep;210:111123. doi: 10.1016/j.jinorgbio.2020.111123. Epub 2020 Jun 15.
3
Toxic and Physiological Metal Uptake and Release by Human Serum Transferrin.
Biophys J. 2020 Jun 16;118(12):2979-2988. doi: 10.1016/j.bpj.2020.05.006. Epub 2020 May 20.
4
A Cephalosporin Prochelator Inhibits New Delhi Metallo-β-lactamase 1 without Removing Zinc.
ACS Infect Dis. 2020 May 8;6(5):1264-1272. doi: 10.1021/acsinfecdis.0c00083. Epub 2020 Apr 29.
5
Development of carbapenem-based fluorogenic probes for the clinical screening of carbapenemase-producing bacteria.
Bioorg Chem. 2020 Jan;94:103405. doi: 10.1016/j.bioorg.2019.103405. Epub 2019 Nov 4.
9
Investigation of Dipicolinic Acid Isosteres for the Inhibition of Metallo-β-Lactamases.
ChemMedChem. 2019 Jul 3;14(13):1271-1282. doi: 10.1002/cmdc.201900172. Epub 2019 May 24.
10
Multi-metal Restriction by Calprotectin Impacts De Novo Flavin Biosynthesis in Acinetobacter baumannii.
Cell Chem Biol. 2019 May 16;26(5):745-755.e7. doi: 10.1016/j.chembiol.2019.02.011. Epub 2019 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验