Suppr超能文献

金属蛋白酶介导的微生物中氧化还原信号转导。

Metalloprotein enabled redox signal transduction in microbes.

机构信息

Department of Chemistry, University of Minnesota Twin Cities, 207 Pleasant St. SE, Minneapolis MN 55414, USA.

Department of Chemistry, University of Minnesota Twin Cities, 207 Pleasant St. SE, Minneapolis MN 55414, USA.

出版信息

Curr Opin Chem Biol. 2023 Oct;76:102331. doi: 10.1016/j.cbpa.2023.102331. Epub 2023 Jun 11.

Abstract

Microbes utilize numerous metal cofactor-containing proteins to recognize and respond to constantly fluctuating redox stresses in their environment. Gaining an understanding of how these metalloproteins sense redox events, and how they communicate such information downstream to DNA to modulate microbial metabolism, is a topic of great interest to both chemists and biologists. In this article, we review recently characterized examples of metalloprotein sensors, focusing on the coordination and oxidation state of the metals involved, how these metals are able to recognize redox stimuli, and how the signal is transmitted beyond the metal center. We discuss specific examples of iron, nickel, and manganese-based microbial sensors, and identify gaps in knowledge in the field of metalloprotein-based signal transduction pathways.

摘要

微生物利用许多含有金属辅因子的蛋白质来识别和响应其环境中不断变化的氧化还原应激。了解这些金属蛋白如何感知氧化还原事件,以及它们如何将这些信息向下游传递到 DNA 以调节微生物代谢,这是化学家和生物学家都非常感兴趣的话题。在本文中,我们综述了最近表征的金属蛋白传感器的例子,重点讨论了所涉及金属的配位和氧化态、这些金属如何能够识别氧化还原刺激,以及信号如何超越金属中心传递。我们讨论了基于铁、镍和锰的微生物传感器的具体例子,并确定了基于金属蛋白信号转导途径领域的知识空白。

相似文献

1
Metalloprotein enabled redox signal transduction in microbes.
Curr Opin Chem Biol. 2023 Oct;76:102331. doi: 10.1016/j.cbpa.2023.102331. Epub 2023 Jun 11.
2
Direct observation of structurally encoded metal discrimination and ether bond formation in a heterodinuclear metalloprotein.
Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17189-94. doi: 10.1073/pnas.1304368110. Epub 2013 Oct 7.
3
Metalloimmunology: The metal ion-controlled immunity.
Adv Immunol. 2020;145:187-241. doi: 10.1016/bs.ai.2019.11.007. Epub 2019 Dec 9.
5
Microbial metalloproteomes are largely uncharacterized.
Nature. 2010 Aug 5;466(7307):779-82. doi: 10.1038/nature09265. Epub 2010 Jul 18.
6
Stealthy microbes: How hijacks bulwarked iron during infection.
Front Cell Infect Microbiol. 2022 Sep 15;12:1017348. doi: 10.3389/fcimb.2022.1017348. eCollection 2022.
8
Modulation by nitric oxide of metalloprotein regulatory activities.
Bioessays. 1996 Jul;18(7):549-56. doi: 10.1002/bies.950180706.
9
Metal ions in biological catalysis: from enzyme databases to general principles.
J Biol Inorg Chem. 2008 Nov;13(8):1205-18. doi: 10.1007/s00775-008-0404-5. Epub 2008 Jul 5.
10

引用本文的文献

2
Immunoblot-based activity assay for heme-containing histidine kinases.
bioRxiv. 2025 May 30:2025.05.28.656737. doi: 10.1101/2025.05.28.656737.
3
Recent advances and future challenges in predictive modeling of metalloproteins by artificial intelligence.
Mol Cells. 2025 Apr;48(4):100191. doi: 10.1016/j.mocell.2025.100191. Epub 2025 Feb 10.
4
Gas Tunnel Engineering of Prolyl Hydroxylase Reprograms Hypoxia Signaling in Cells.
Angew Chem Int Ed Engl. 2024 Nov 25;63(48):e202409234. doi: 10.1002/anie.202409234. Epub 2024 Oct 21.
5
Oxygen affinities of DosT and DosS sensor kinases with implications for hypoxia adaptation in Mycobacterium tuberculosis.
J Inorg Biochem. 2024 Aug;257:112576. doi: 10.1016/j.jinorgbio.2024.112576. Epub 2024 Apr 26.
6
Understanding ATP Binding to DosS Catalytic Domain with a Short ATP-Lid.
Biochemistry. 2023 Nov 21;62(22):3283-3292. doi: 10.1021/acs.biochem.3c00306. Epub 2023 Oct 31.
7
Gas tunnel engineering of prolyl hydroxylase reprograms hypoxia signaling in cells.
bioRxiv. 2024 May 15:2023.08.07.552357. doi: 10.1101/2023.08.07.552357.

本文引用的文献

2
The Periodic Table's Impact on Bioinorganic Chemistry and Biology's Selective Use of Metal Ions.
Struct Bond. 2019;182:153-173. doi: 10.1007/430_2019_45. Epub 2019 Oct 5.
4
Signal Transduction Network Principles Underlying Bacterial Collective Behaviors.
Annu Rev Microbiol. 2022 Sep 8;76:235-257. doi: 10.1146/annurev-micro-042922-122020. Epub 2022 May 24.
5
Mycobacterium tuberculosis DosS binds HS through its Fe heme iron to regulate the DosR dormancy regulon.
Redox Biol. 2022 Jun;52:102316. doi: 10.1016/j.redox.2022.102316. Epub 2022 Apr 20.
6
Iron-sulfur clusters as inhibitors and catalysts of viral replication.
Nat Chem. 2022 Mar;14(3):253-266. doi: 10.1038/s41557-021-00882-0. Epub 2022 Feb 14.
7
Structural insights into the functional divergence of WhiB-like proteins in Mycobacterium tuberculosis.
Mol Cell. 2021 Jul 15;81(14):2887-2900.e5. doi: 10.1016/j.molcel.2021.06.002. Epub 2021 Jun 24.
8
Revisiting Nitric Oxide Signaling: Where Was It, and Where Is It Going?
Biochemistry. 2021 Nov 23;60(46):3491-3496. doi: 10.1021/acs.biochem.1c00276. Epub 2021 Jun 7.
9
Visualizing the Dynamic Metalation State of New Delhi Metallo-β-lactamase-1 in Bacteria Using a Reversible Fluorescent Probe.
J Am Chem Soc. 2021 Jun 9;143(22):8314-8323. doi: 10.1021/jacs.1c00290. Epub 2021 May 26.
10
Sensing mechanisms of iron-sulfur cluster regulatory proteins elucidated using native mass spectrometry.
Dalton Trans. 2021 Jun 21;50(23):7887-7897. doi: 10.1039/d1dt00993a. Epub 2021 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验