Université Paris-Saclay, Faculté des Sciences d'Orsay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France; Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France.
Université Paris-Saclay, Faculté des Sciences d'Orsay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France; Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France; Institut Universitaire de France, Paris, France.
Curr Top Dev Biol. 2021;145:313-348. doi: 10.1016/bs.ctdb.2021.03.002. Epub 2021 Apr 10.
Neural crest cells are a multipotent embryonic stem cell population that emerges from the lateral border of the neural plate after an epithelium-to-mesenchyme transition. These cells then migrate extensively in the embryo and generate a large variety of differentiated cell types and tissues. Alterations in almost any of the processes involved in neural crest development can cause severe congenital defects in humans. Moreover, the malignant transformation of one of the many neural crest derivatives, during childhood or in adults, can cause the development of aggressive tumors prone to metastasis such as melanoma and neuroblastoma. Collectively these diseases are called neurocristopathies. Here we review how a variety of approaches implemented using the amphibian Xenopus as an experimental model have shed light on the molecular basis of numerous neurocristopathies, and how this versatile yet underused vertebrate animal model could help accelerate discoveries in the field. Using the current framework of the neural crest gene regulatory network, we review the pathologies linked to defects at each step of neural crest formation and highlight studies that have used the Xenopus model to decipher the cellular and molecular aspects of neurocristopathies.
神经嵴细胞是一种多能胚胎干细胞群体,它在表皮-间质转化后从神经板的侧缘出现。然后,这些细胞在胚胎中广泛迁移,并产生大量不同的分化细胞类型和组织。神经嵴发育过程中几乎任何过程的改变都可能导致人类严重的先天性缺陷。此外,在儿童期或成年期,许多神经嵴衍生物中的一种恶性转化,可能导致发展为侵袭性肿瘤,如黑色素瘤和神经母细胞瘤,这些肿瘤容易转移。这些疾病统称为神经嵴病变。在这里,我们回顾了使用两栖动物非洲爪蟾作为实验模型的各种方法如何揭示了许多神经嵴病变的分子基础,以及这种多功能但尚未充分利用的脊椎动物模型如何帮助加速该领域的发现。我们利用当前的神经嵴基因调控网络框架,回顾了与神经嵴形成的每一步缺陷相关的病理学,并强调了使用非洲爪蟾模型来解析神经嵴病变的细胞和分子方面的研究。