Suppr超能文献

共进化噬菌体驯化可增强细菌抑制作用,并延缓噬菌体抗性进化。

Coevolutionary phage training leads to greater bacterial suppression and delays the evolution of phage resistance.

机构信息

Division of Biological Sciences, University of California San Diego, San Diego, CA 92093.

Department of Evolutionary and Environmental Biology and The Institute of Evolution, University of Haifa, 3498838 Haifa, Israel.

出版信息

Proc Natl Acad Sci U S A. 2021 Jun 8;118(23). doi: 10.1073/pnas.2104592118.

Abstract

The evolution of antibiotic-resistant bacteria threatens to become the leading cause of worldwide mortality. This crisis has renewed interest in the practice of phage therapy. Yet, bacteria's capacity to evolve resistance may debilitate this therapy as well. To combat the evolution of phage resistance and improve treatment outcomes, many suggest leveraging phages' ability to counter resistance by evolving phages on target hosts before using them in therapy (phage training). We found that in vitro, λtrn, a phage trained for 28 d, suppressed bacteria ∼1,000-fold for three to eight times longer than its untrained ancestor. Prolonged suppression was due to a delay in the evolution of resistance caused by several factors. Mutations that confer resistance to λtrn are ∼100× less common, and while the target bacterium can evolve complete resistance to the untrained phage in a single step, multiple mutations are required to evolve complete resistance to λtrn. Mutations that confer resistance to λtrn are more costly than mutations for untrained phage resistance. Furthermore, when resistance does evolve, λtrn is better able to suppress these forms of resistance. One way that λtrn improved was through recombination with a gene in a defunct prophage in the host genome, which doubled phage fitness. This transfer of information from the host genome is an unexpected but highly efficient mode of training phage. Lastly, we found that many other independently trained λ phages were able to suppress bacterial populations, supporting the important role training could play during phage therapeutic development.

摘要

抗生素耐药菌的进化有可能成为全球死亡率的主要原因。这场危机重新引发了人们对噬菌体疗法的兴趣。然而,细菌产生耐药性的能力也可能使这种疗法失效。为了对抗噬菌体耐药性的进化并改善治疗效果,许多人建议利用噬菌体在目标宿主上进化以对抗耐药性的能力,在将其用于治疗之前对噬菌体进行训练(噬菌体训练)。我们发现,在体外,λtrn 经过 28 天的训练,比未经训练的祖先长 3 到 8 倍,抑制细菌的能力提高了约 1000 倍。这种长时间的抑制是由于多种因素导致的耐药性进化延迟。赋予 λtrn 耐药性的突变要少 100 倍,虽然目标细菌可以在单个步骤中对未经训练的噬菌体产生完全耐药性,但进化到对 λtrn 的完全耐药性需要多个突变。赋予 λtrn 耐药性的突变比未经训练的噬菌体耐药性的突变成本更高。此外,当耐药性确实进化时,λtrn 能够更好地抑制这些形式的耐药性。λtrn 改进的一种方式是通过与宿主基因组中一个失效的前噬菌体中的基因重组,从而使噬菌体的适应性提高了一倍。这种来自宿主基因组的信息转移是一种意想不到但非常有效的噬菌体训练模式。最后,我们发现许多其他独立训练的 λ 噬菌体也能够抑制细菌种群,这支持了训练在噬菌体治疗开发过程中可能发挥的重要作用。

相似文献

1
2
Comparison of bacterial suppression by phage cocktails, dual-receptor generalists, and coevolutionarily trained phages.
Evol Appl. 2022 Dec 9;16(1):152-162. doi: 10.1111/eva.13518. eCollection 2023 Jan.
4
Carriage of λ Latent Virus Is Costly for Its Bacterial Host due to Frequent Reactivation in Monoxenic Mouse Intestine.
PLoS Genet. 2016 Feb 12;12(2):e1005861. doi: 10.1371/journal.pgen.1005861. eCollection 2016 Feb.
5
Population Dynamics of Phage and Bacteria in Spatially Structured Habitats Using Phage λ and Escherichia coli.
J Bacteriol. 2016 May 27;198(12):1783-93. doi: 10.1128/JB.00965-15. Print 2016 Jun 15.
7
The Molecular and Genetic Basis of Repeatable Coevolution between Escherichia coli and Bacteriophage T3 in a Laboratory Microcosm.
PLoS One. 2015 Jun 26;10(6):e0130639. doi: 10.1371/journal.pone.0130639. eCollection 2015.
8
Nongenetic individuality in the host-phage interaction.
PLoS Biol. 2008 May 20;6(5):e120. doi: 10.1371/journal.pbio.0060120.
10
Impact of bile salts on coevolutionary dynamics between the gut bacterium Escherichia coli and its lytic phage PP01.
Infect Genet Evol. 2019 Sep;73:425-432. doi: 10.1016/j.meegid.2019.05.021. Epub 2019 May 30.

引用本文的文献

1
Phage Therapy: Combating Evolution of Bacterial Resistance to Phages.
Viruses. 2025 Aug 8;17(8):1094. doi: 10.3390/v17081094.
3
Therapeutic Optimization of Phages: From Isolation to Directed Evolution.
Viruses. 2025 Jun 30;17(7):938. doi: 10.3390/v17070938.
4
Current Clinical Laboratory Challenges to Widespread Adoption of Phage Therapy in the United States.
Antibiotics (Basel). 2025 May 29;14(6):553. doi: 10.3390/antibiotics14060553.
7
Optimizing phage therapy with artificial intelligence: a perspective.
Front Cell Infect Microbiol. 2025 May 27;15:1611857. doi: 10.3389/fcimb.2025.1611857. eCollection 2025.
8
Coevolutionary training of phages can be more successful in several small, relative to single large, habitats.
mLife. 2025 Mar 12;4(2):223-225. doi: 10.1002/mlf2.12158. eCollection 2025 Apr.
9
Isolation and Characterization of a Novel Lytic Phage N22 and Its Effect on Drug-Resistant .
Infect Drug Resist. 2025 Apr 10;18:1807-1818. doi: 10.2147/IDR.S515363. eCollection 2025.
10
Insights from Shigella bacteriophage genomes analysis.
Bioinformation. 2024 Dec 31;20(12):2050-2061. doi: 10.6026/9732063002002050. eCollection 2024.

本文引用的文献

3
High-throughput discovery of phage receptors using transposon insertion sequencing of bacteria.
Proc Natl Acad Sci U S A. 2020 Aug 4;117(31):18670-18679. doi: 10.1073/pnas.2001888117. Epub 2020 Jul 16.
4
Adapting a Phage to Combat Phage Resistance.
Antibiotics (Basel). 2020 May 29;9(6):291. doi: 10.3390/antibiotics9060291.
5
Distinct patterns of mutational sensitivity for resistance and maltodextrin transport in LamB.
Microb Genom. 2020 Apr;6(4). doi: 10.1099/mgen.0.000364. Epub 2020 Apr 2.
6
Development of a Bacteriophage Cocktail to Constrain the Emergence of Phage-Resistant .
Front Microbiol. 2020 Mar 4;11:327. doi: 10.3389/fmicb.2020.00327. eCollection 2020.
7
Treat phage like living antibiotics.
Nat Microbiol. 2020 Mar;5(3):391-392. doi: 10.1038/s41564-019-0666-4.
8
Reprogramming Bacteriophage Host Range through Structure-Guided Design of Chimeric Receptor Binding Proteins.
Cell Rep. 2019 Oct 29;29(5):1336-1350.e4. doi: 10.1016/j.celrep.2019.09.062.
9
10
Pleiotropic effects of rfa-gene mutations on Escherichia coli envelope properties.
Sci Rep. 2019 Jul 4;9(1):9696. doi: 10.1038/s41598-019-46100-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验