Suppr超能文献

杆状病毒感染昆虫细胞中替代启动子用于优化重组蛋白表达的研究综述。

A review of alternative promoters for optimal recombinant protein expression in baculovirus-infected insect cells.

机构信息

Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.

Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.

出版信息

Protein Expr Purif. 2021 Oct;186:105924. doi: 10.1016/j.pep.2021.105924. Epub 2021 Jun 1.

Abstract

Generating recombinant proteins in insect cells has been made possible via the use of the Baculovirus Expression Vector System (BEVS). Despite the success of many proteins via this platform, some targets remain a challenge due to issues such as cytopathic effects, the unpredictable nature of co-infection and co-expressions, and baculovirus genome instability. Many promoters have been assayed for the purpose of expressing diverse proteins in insect cells, and yet there remains a lack of implementation of those results when reviewing the landscape of commercially available baculovirus vectors. In advancing the platform to produce a greater variety of proteins and complexes, the development of such constructs cannot be avoided. A better understanding of viral gene regulation and promoter options including viral, synthetic, and insect-derived promoters will be beneficial to researchers looking to utilize BEVS by recruiting these intricate mechanisms of gene regulation for heterologous gene expression. Here we summarize some of the developments that could be utilized to improve the expression of recombinant proteins and multi-protein complexes in insect cells.

摘要

利用杆状病毒表达载体系统(BEVS)可以在昆虫细胞中生成重组蛋白。尽管通过该平台已经成功表达了许多蛋白质,但由于细胞病变效应、共感染和共表达的不可预测性以及杆状病毒基因组不稳定性等问题,某些靶标仍然具有挑战性。已经对许多启动子进行了检测,目的是在昆虫细胞中表达不同的蛋白质,但在回顾商业可用杆状病毒载体的情况时,这些结果的实施仍然缺乏。为了在该平台上生产更多种类的蛋白质和复合物,这些构建体的开发是不可避免的。更好地了解病毒基因调控和启动子选择,包括病毒、合成和昆虫衍生的启动子,将有助于研究人员通过招募这些复杂的基因调控机制来利用 BEVS 进行异源基因表达。在这里,我们总结了一些可以用来提高昆虫细胞中重组蛋白和多蛋白复合物表达的进展。

相似文献

1
A review of alternative promoters for optimal recombinant protein expression in baculovirus-infected insect cells.
Protein Expr Purif. 2021 Oct;186:105924. doi: 10.1016/j.pep.2021.105924. Epub 2021 Jun 1.
2
Identification of Essential Genetic Baculoviral Elements for Recombinant Protein Expression by Transactivation in Sf21 Insect Cells.
PLoS One. 2016 Mar 2;11(3):e0149424. doi: 10.1371/journal.pone.0149424. eCollection 2016.
3
Improving the baculovirus expression vector system with vankyrin-enhanced technology.
Biotechnol Prog. 2017 Nov;33(6):1496-1507. doi: 10.1002/btpr.2516. Epub 2017 Jul 6.
4
A Comprehensive Guide to the Commercial Baculovirus Expression Vector Systems for Recombinant Protein Production.
Protein Pept Lett. 2020;27(6):529-537. doi: 10.2174/0929866526666191112152646.
6
Purification Process for a Secreted Protein Produced in Insect Cells.
Methods Mol Biol. 2024;2829:247-255. doi: 10.1007/978-1-0716-3961-0_18.
7
Thirty years of baculovirus-insect cell protein expression: from dark horse to mainstream technology.
J Gen Virol. 2015 Jan;96(Pt 1):6-23. doi: 10.1099/vir.0.067108-0. Epub 2014 Sep 22.
9
Significant productivity improvement of the baculovirus expression vector system by engineering a novel expression cassette.
PLoS One. 2014 May 13;9(5):e96562. doi: 10.1371/journal.pone.0096562. eCollection 2014.
10
Transforming Lepidopteran Insect Cells for Continuous Recombinant Protein Expression.
Methods Mol Biol. 2016;1350:329-48. doi: 10.1007/978-1-4939-3043-2_16.

引用本文的文献

2
4
A method for facile production of variable lymphocyte receptors using SHuffle Escherichia coli.
Biotechnol Prog. 2025 May-Jun;41(3):e3530. doi: 10.1002/btpr.3530. Epub 2025 Jan 23.
5
Continuous Production of Influenza VLPs Using IC-BEVS and Multi-Stage Bioreactors.
Biotechnol Bioeng. 2025 Apr;122(4):846-857. doi: 10.1002/bit.28925. Epub 2025 Jan 17.
7
The Development of Epitope-Based Recombinant Protein Vaccines against SARS-CoV-2.
AAPS J. 2024 Aug 13;26(5):93. doi: 10.1208/s12248-024-00963-1.
9
The CDE region of feline Calicivirus VP1 protein is a potential candidate subunit vaccine.
BMC Vet Res. 2024 Mar 5;20(1):80. doi: 10.1186/s12917-024-03914-2.
10
Tobacco Plant: A Novel and Promising Heterologous Bioreactor for the Production of Recombinant Bovine Chymosin.
Mol Biotechnol. 2024 Sep;66(9):2595-2605. doi: 10.1007/s12033-023-01043-z. Epub 2024 Jan 20.

本文引用的文献

1
A New Bacmid for Customized Protein Glycosylation Pathway Engineering in the Baculovirus-Insect Cell System.
ACS Chem Biol. 2021 Oct 15;16(10):1941-1950. doi: 10.1021/acschembio.0c00974. Epub 2021 Feb 17.
3
SmartBac, a new baculovirus system for large protein complex production.
J Struct Biol X. 2019 Jan-Mar;1:100003. doi: 10.1016/j.yjsbx.2019.100003. Epub 2019 Feb 10.
4
Construction and characterization of a synthetic Baculovirus-inducible 39K promoter.
J Biol Eng. 2018 Dec 4;12:30. doi: 10.1186/s13036-018-0121-8. eCollection 2018.
6
Optimization of viral protein ratios for production of rAAV serotype 5 in the baculovirus system.
Gene Ther. 2018 Sep;25(6):415-424. doi: 10.1038/s41434-018-0034-7. Epub 2018 Aug 1.
7
CRISPR-Cas9 vectors for genome editing and host engineering in the baculovirus-insect cell system.
Proc Natl Acad Sci U S A. 2017 Aug 22;114(34):9068-9073. doi: 10.1073/pnas.1705836114. Epub 2017 Aug 7.
8
MacroBac: New Technologies for Robust and Efficient Large-Scale Production of Recombinant Multiprotein Complexes.
Methods Enzymol. 2017;592:1-26. doi: 10.1016/bs.mie.2017.03.008. Epub 2017 May 15.
9
A novel baculovirus-derived promoter with high activity in the baculovirus expression system.
PeerJ. 2016 Jun 28;4:e2183. doi: 10.7717/peerj.2183. eCollection 2016.
10
biGBac enables rapid gene assembly for the expression of large multisubunit protein complexes.
Proc Natl Acad Sci U S A. 2016 May 10;113(19):E2564-9. doi: 10.1073/pnas.1604935113. Epub 2016 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验