Suppr超能文献

利用常规微生物学监测在中低收入国家的抗生素耐药性的策略。

Surveillance strategies using routine microbiology for antimicrobial resistance in low- and middle-income countries.

机构信息

Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.

Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit, Vientiane, Laos.

出版信息

Clin Microbiol Infect. 2021 Oct;27(10):1391-1399. doi: 10.1016/j.cmi.2021.05.037. Epub 2021 Jun 7.

Abstract

BACKGROUND

Routine microbiology results are a valuable source of antimicrobial resistance (AMR) surveillance data in low- and middle-income countries (LMICs) as well as in high-income countries. Different approaches and strategies are used to generate AMR surveillance data.

OBJECTIVES

We aimed to review strategies for AMR surveillance using routine microbiology results in LMICs and to highlight areas that need support to generate high-quality AMR data.

SOURCES

We searched PubMed for papers that used routine microbiology to describe the epidemiology of AMR and drug-resistant infections in LMICs. We also included papers that, from our perspective, were critical in highlighting the biases and challenges or employed specific strategies to overcome these in reporting AMR surveillance in LMICs.

CONTENT

Topics covered included strategies of identifying AMR cases (including case-finding based on isolates from routine diagnostic specimens and case-based surveillance of clinical syndromes), of collecting data (including cohort, point-prevalence survey, and case-control), of sampling AMR cases (including lot quality assurance surveys), and of processing and analysing data for AMR surveillance in LMICs.

IMPLICATIONS

The various AMR surveillance strategies warrant a thorough understanding of their limitations and potential biases to ensure maximum utilization and interpretation of local routine microbiology data across time and space. For instance, surveillance using case-finding based on results from clinical diagnostic specimens is relatively easy to implement and sustain in LMIC settings, but the estimates of incidence and proportion of AMR is at risk of biases due to underuse of microbiology. Case-based surveillance of clinical syndromes generates informative statistics that can be translated to clinical practices but needs financial and technical support as well as locally tailored trainings to sustain. Innovative AMR surveillance strategies that can easily be implemented and sustained with minimal costs will be useful for improving AMR data availability and quality in LMICs.

摘要

背景

在中低收入国家(LMICs)和高收入国家,常规微生物学结果是监测抗生素耐药性(AMR)的有价值的数据来源。不同的方法和策略用于生成 AMR 监测数据。

目的

我们旨在审查使用 LMICs 中的常规微生物学结果进行 AMR 监测的策略,并强调需要支持的领域,以生成高质量的 AMR 数据。

来源

我们在 PubMed 上搜索了使用常规微生物学来描述 LMICs 中 AMR 和耐药感染的流行病学的论文。我们还包括了从我们的角度来看,在报告 LMICs 中的 AMR 监测时,突出偏见和挑战或采用特定策略来克服这些偏见和挑战的重要论文。

内容

涵盖的主题包括确定 AMR 病例的策略(包括基于常规诊断标本中的分离物的病例发现和临床综合征的病例监测),收集数据的策略(包括队列、点 prevalence 调查和病例对照),AMR 病例的采样策略(包括批质量保证调查),以及处理和分析 LMICs 中 AMR 监测数据的策略。

影响

各种 AMR 监测策略需要彻底了解其局限性和潜在偏见,以确保在时间和空间上最大限度地利用和解释当地的常规微生物学数据。例如,基于临床诊断标本结果的病例发现监测在 LMIC 环境中相对容易实施和维持,但由于对微生物学的使用不足,AMR 的发病率和比例估计存在偏差的风险。临床综合征的病例监测产生了可以转化为临床实践的信息统计数据,但需要财务和技术支持以及针对当地情况的培训来维持。能够以最小的成本轻松实施和维持的创新性 AMR 监测策略将有助于改善 LMICs 中 AMR 数据的可用性和质量。

相似文献

1
Surveillance strategies using routine microbiology for antimicrobial resistance in low- and middle-income countries.
Clin Microbiol Infect. 2021 Oct;27(10):1391-1399. doi: 10.1016/j.cmi.2021.05.037. Epub 2021 Jun 7.
2
Setting up laboratory-based antimicrobial resistance surveillance in low- and middle-income countries: lessons learned from Georgia.
Clin Microbiol Infect. 2021 Oct;27(10):1409-1413. doi: 10.1016/j.cmi.2021.05.027. Epub 2021 May 24.
5
Filling the gaps in the global prevalence map of clinical antimicrobial resistance.
Proc Natl Acad Sci U S A. 2021 Jan 5;118(1). doi: 10.1073/pnas.2013515118.
6
Antimicrobial resistance in low- and middle-income countries: current status and future directions.
Expert Rev Anti Infect Ther. 2022 Feb;20(2):147-160. doi: 10.1080/14787210.2021.1951705. Epub 2021 Jul 19.
10
Addressing antimicrobial resistance in low and middle-income countries: overcoming challenges and implementing effective strategies.
Environ Sci Pollut Res Int. 2023 Sep;30(45):101896-101902. doi: 10.1007/s11356-023-29434-4. Epub 2023 Aug 23.

引用本文的文献

3
Retrospective antimicrobial consumption surveillance at health facility level in Dodoma Region, Tanzania.
BMJ Open. 2025 May 21;15(5):e096682. doi: 10.1136/bmjopen-2024-096682.
4
Cost-effectiveness of maintaining an active hospital microbiology laboratory service in Timor-Leste.
Lancet Reg Health Southeast Asia. 2025 Apr 30;36:100582. doi: 10.1016/j.lansea.2025.100582. eCollection 2025 May.
5
Bacteraemia in a Nigerian hospital: Implementing antimicrobial resistance surveillance.
J Public Health Afr. 2025 Feb 7;16(1):655. doi: 10.4102/jphia.v16i1.655. eCollection 2025.
6
Insights of SEDRIC, the Surveillance and Epidemiology of Drug-Resistant Infections Consortium.
Wellcome Open Res. 2025 Jan 13;10:5. doi: 10.12688/wellcomeopenres.23494.1. eCollection 2025.
7
Bayesian phylogeographic analysis infers cross-border transmission dynamics of drug-resistant Enteritidis.
Microbiol Spectr. 2025 Mar 4;13(3):e0229224. doi: 10.1128/spectrum.02292-24. Epub 2025 Feb 7.
9

本文引用的文献

1
The Mini-Lab: accessible clinical bacteriology for low-resource settings.
Lancet Microbe. 2020 Jun;1(2):e56-e58. doi: 10.1016/S2666-5247(20)30012-4. Epub 2020 Jun 8.
3
Burden of Antimicrobial Resistance: Compared to What?
Epidemiol Rev. 2022 Jan 14;43(1):53-64. doi: 10.1093/epirev/mxab001.
5
Impact of low blood culture usage on rates of antimicrobial resistance.
J Infect. 2021 Mar;82(3):355-362. doi: 10.1016/j.jinf.2020.10.040. Epub 2020 Dec 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验