Suppr超能文献

肝细胞癌中ceRNA网络构建及肿瘤浸润免疫细胞分析

ceRNA network development and tumor-infiltrating immune cell analysis in hepatocellular carcinoma.

作者信息

Chen Li, Zou Weijie, Zhang Lei, Shi Huijuan, Li Zhi, Ni Caifang

机构信息

Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Jiangsu Province, Suzhou, 215006, People's Republic of China.

Department of Radiology, The First Affiliated Hospital of Soochow University, Jiangsu Province, Suzhou, 215006, People's Republic of China.

出版信息

Med Oncol. 2021 Jun 19;38(7):85. doi: 10.1007/s12032-021-01534-6.

Abstract

Hepatocellular carcinoma (HCC) is among the primary causes of cancer deaths globally. Despite efforts to understand liver cancer, its high morbidity and mortality remain high. Herein, we constructed two nomograms based on competing endogenous RNA (ceRNA) networks and invading immune cells to describe the molecular mechanisms along with the clinical prognosis of HCC patients. RNA maps of tumors and normal samples were downloaded from The Cancer Genome Atlas database. HTseq counts and fragments per megapons per thousand bases were read from 421 samples, including 371 tumor samples and 50 normal samples. We established a ceRNA network based on differential gene expression in normal versus tumor subjects. CIBERSORT was employed to differentiate 22 immune cell types according to tumor transcriptomes. Kaplan-Meier along with Cox proportional hazard analyses were employed to determine the prognosis-linked factors. Nomograms were constructed based on prognostic immune cells and ceRNAs. We employed Receiver operating characteristic (ROC) and calibration curve analyses to estimate these nomogram. The difference analysis found 2028 messenger RNAs (mRNAs), 128 micro RNAs (miRNAs), and 136 long non-coding RNAs (lncRNAs) to be significantly differentially expressed in tumor samples relative to normal samples. We set up a ceRNA network containing 21 protein-coding mRNAs, 12 miRNAs, and 3 lncRNAs. In Kaplan-Meier analysis, 21 of the 36 ceRNAs were considered significant. Of the 22 cell types, resting dendritic cell levels were markedly different in tumor samples versus normal controls. Calibration and ROC curve analysis of the ceRNA network, as well as immune infiltration of tumor showed restful accuracy (3-year survival area under curve (AUC): 0.691, 5-year survival AUC: 0.700; 3-year survival AUC: 0.674, 5-year survival AUC: 0.694). Our data suggest that Tregs, CD4 T cells, mast cells, SNHG1, HMMR and hsa-miR-421 are associated with HCC based on ceRNA immune cells co-expression patterns. On the basis of ceRNA network modeling and immune cell infiltration analysis, our study offers an effective bioinformatics strategy for studying HCC molecular mechanisms and prognosis.

摘要

肝细胞癌(HCC)是全球癌症死亡的主要原因之一。尽管人们努力了解肝癌,但其高发病率和死亡率仍然居高不下。在此,我们基于竞争性内源性RNA(ceRNA)网络和浸润免疫细胞构建了两个列线图,以描述HCC患者的分子机制及临床预后。肿瘤和正常样本的RNA图谱从癌症基因组图谱数据库下载。从421个样本(包括371个肿瘤样本和50个正常样本)中读取HTseq计数和每百万碱基中每千碱基的片段数。我们基于正常与肿瘤受试者的差异基因表达建立了一个ceRNA网络。采用CIBERSORT根据肿瘤转录组区分22种免疫细胞类型。采用Kaplan-Meier法和Cox比例风险分析法确定预后相关因素。基于预后免疫细胞和ceRNA构建列线图。我们采用受试者工作特征(ROC)和校准曲线分析来评估这些列线图。差异分析发现,相对于正常样本,肿瘤样本中有2028个信使RNA(mRNA)、128个微小RNA(miRNA)和136个长链非编码RNA(lncRNA)有显著差异表达。我们建立了一个包含21个蛋白质编码mRNA、12个miRNA和3个lncRNA的ceRNA网络。在Kaplan-Meier分析中,36个ceRNA中的21个被认为具有显著性。在22种细胞类型中,肿瘤样本与正常对照相比,静息树突状细胞水平有显著差异。ceRNA网络的校准和ROC曲线分析以及肿瘤的免疫浸润显示出良好的准确性(3年生存曲线下面积(AUC):0.691,5年生存AUC:0.700;3年生存AUC:0.674,5年生存AUC:0.694)。我们的数据表明,基于ceRNA免疫细胞共表达模式,调节性T细胞、CD4 T细胞、肥大细胞、SNHG1、HMMR和hsa-miR-421与HCC相关。基于ceRNA网络建模和免疫细胞浸润分析,我们的研究为研究HCC分子机制和预后提供了一种有效的生物信息学策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验