Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
J Am Chem Soc. 2021 Jul 7;143(26):9798-9812. doi: 10.1021/jacs.1c03108. Epub 2021 Jun 23.
Huntington's disease is a neurodegenerative disorder caused by the expansion of a polyglutamine repeat (>36Q) in the N-terminal domain of the huntingtin protein (Htt), which renders the protein or fragments thereof more prone to aggregate and form inclusions. Although several Htt N-terminal fragments of different lengths have been identified within Htt inclusions, most studies on the mechanisms, sequence, and structural determinants of Htt aggregation have focused on the Httexon1 (Httex1). Herein, we investigated the aggregation properties of mutant N-terminal Htt fragments of various lengths (Htt171, Htt140, and Htt104) in comparison to mutant Httex1 (mHttex1). We also present a new chemoenzymatic semisynthetic strategy that enables site-specific phosphorylation of Htt beyond Httex1. These advances yielded insights into how post-translational modifications (PTMs) and structured domains beyond Httex1 influence aggregation mechanisms, kinetics, and fibril morphology of longer N-terminal Htt fragments. We demonstrate that phosphorylation at T107 significantly slows the aggregation of mHtt171, whereas phosphorylation at T107 and S116 accelerates the aggregation, underscoring the importance of crosstalk between different PTMs. The mHtt171 proteins aggregate via a different mechanism and form oligomers and fibrillar aggregates with morphological properties that are distinct from that of mHttex1. These observations suggest that different N-terminal fragments could have distinct aggregation mechanisms and that a single polyQ-targeting antiaggregation strategy may not effectively inhibit the aggregation of all N-terminal Htt fragments. Finally, our results underscore the need for further studies to investigate the aggregation mechanisms of Htt fragments and how the various fragments interact with each other and influence Htt toxicity and disease progression.
亨廷顿病是一种神经退行性疾病,由亨廷顿蛋白(Htt)N 端结构域中多聚谷氨酰胺重复序列(>36Q)的扩展引起,导致该蛋白或其片段更容易聚集并形成包含体。尽管在 Htt 包含体中已经鉴定出几种不同长度的 Htt N 端片段,但大多数关于 Htt 聚集机制、序列和结构决定因素的研究都集中在 Htt exon1(Httex1)上。在此,我们研究了不同长度的突变 N 端 Htt 片段(Htt171、Htt140 和 Htt104)与突变 Httex1(mHttex1)相比的聚集特性。我们还提出了一种新的化学酶半合成策略,能够实现 Htt 在 Httex1 之外的定点磷酸化。这些进展深入了解了翻译后修饰(PTMs)和 Httex1 以外的结构域如何影响更长 N 端 Htt 片段的聚集机制、动力学和纤维形态。我们证明了 T107 的磷酸化显著减缓了 mHtt171 的聚集,而 T107 和 S116 的磷酸化加速了聚集,这强调了不同 PTM 之间相互作用的重要性。mHtt171 蛋白通过不同的机制聚集,并形成寡聚物和纤维状聚集体,其形态特征与 mHttex1 不同。这些观察结果表明,不同的 N 端片段可能具有不同的聚集机制,并且单一的多聚 Q 靶向抗聚集策略可能无法有效抑制所有 N 端 Htt 片段的聚集。最后,我们的结果强调了需要进一步研究来研究 Htt 片段的聚集机制,以及各种片段如何相互作用并影响 Htt 毒性和疾病进展。