Suppr超能文献

分层测试可准确识别单细胞数据批次效应下的差异表达基因。

Stratified Test Accurately Identifies Differentially Expressed Genes Under Batch Effects in Single-Cell Data.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2072-2079. doi: 10.1109/TCBB.2021.3094650. Epub 2021 Dec 8.

Abstract

Analyzing single-cell sequencing data from large cohorts is challenging. Discrepancies across experiments and differences among participants often lead to omissions and false discoveries in differentially expressed genes. We find that the Van Elteren test, a stratified version of the widely used Wilcoxon rank-sum test, elegantly mitigates the problem. We also modified the common language effect size to supplement this test, further improving its utility. On both simulated and real patient data we show the ability of Van Elteren test to control for false positives and false negatives. A comprehensive assessment using receiver operating characteristic (ROC) curve shows that Van Elteren test achieves higher sensitivity and specificity on simulated datasets, compared with nine state-of-the-art differential expression analysis methods. The effect size also estimates the differences between cell types more accurately.

摘要

分析大型队列的单细胞测序数据具有挑战性。实验之间的差异和参与者之间的差异常常导致差异表达基因中的遗漏和错误发现。我们发现,Van Elteren 检验是广泛使用的 Wilcoxon 秩和检验的分层版本,它巧妙地解决了这个问题。我们还修改了常见的语言效应量来补充这个检验,进一步提高了它的实用性。在模拟和真实的患者数据上,我们展示了 Van Elteren 检验控制假阳性和假阴性的能力。使用接收器操作特征(ROC)曲线的综合评估表明,与九种最先进的差异表达分析方法相比,Van Elteren 检验在模拟数据集上具有更高的灵敏度和特异性。效应量也能更准确地估计细胞类型之间的差异。

相似文献

1
Stratified Test Accurately Identifies Differentially Expressed Genes Under Batch Effects in Single-Cell Data.
IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2072-2079. doi: 10.1109/TCBB.2021.3094650. Epub 2021 Dec 8.
2
An Effective Biclustering-Based Framework for Identifying Cell Subpopulations From scRNA-seq Data.
IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2249-2260. doi: 10.1109/TCBB.2020.2979717. Epub 2021 Dec 8.
3
Confronting false discoveries in single-cell differential expression.
Nat Commun. 2021 Sep 28;12(1):5692. doi: 10.1038/s41467-021-25960-2.
4
Robust identification of perturbed cell types in single-cell RNA-seq data.
Nat Commun. 2024 Sep 1;15(1):7610. doi: 10.1038/s41467-024-51649-3.
5
Evolving Transcriptomic Profiles From Single-Cell RNA-Seq Data Using Nature-Inspired Multiobjective Optimization.
IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2445-2458. doi: 10.1109/TCBB.2020.2971993. Epub 2021 Dec 8.
6
Integrating multiple references for single-cell assignment.
Nucleic Acids Res. 2021 Aug 20;49(14):e80. doi: 10.1093/nar/gkab380.
10
Computational methods for the integrative analysis of single-cell data.
Brief Bioinform. 2021 Jan 18;22(1):20-29. doi: 10.1093/bib/bbaa042.

引用本文的文献

1
Single-cell omics in plant biology: mechanistic insights and applications for crop improvement.
Adv Biotechnol (Singap). 2025 Jul 2;3(3):20. doi: 10.1007/s44307-025-00074-8.
2
A comprehensive spatio-cellular map of the human hypothalamus.
Nature. 2025 Mar;639(8055):708-716. doi: 10.1038/s41586-024-08504-8. Epub 2025 Feb 5.

本文引用的文献

1
Droplet scRNA-seq is not zero-inflated.
Nat Biotechnol. 2020 Feb;38(2):147-150. doi: 10.1038/s41587-019-0379-5.
2
Single-nuclei RNA-seq on human retinal tissue provides improved transcriptome profiling.
Nat Commun. 2019 Dec 17;10(1):5743. doi: 10.1038/s41467-019-12917-9.
3
Fast, sensitive and accurate integration of single-cell data with Harmony.
Nat Methods. 2019 Dec;16(12):1289-1296. doi: 10.1038/s41592-019-0619-0. Epub 2019 Nov 18.
5
Current best practices in single-cell RNA-seq analysis: a tutorial.
Mol Syst Biol. 2019 Jun 19;15(6):e8746. doi: 10.15252/msb.20188746.
6
Comprehensive Integration of Single-Cell Data.
Cell. 2019 Jun 13;177(7):1888-1902.e21. doi: 10.1016/j.cell.2019.05.031. Epub 2019 Jun 6.
7
Efficient integration of heterogeneous single-cell transcriptomes using Scanorama.
Nat Biotechnol. 2019 Jun;37(6):685-691. doi: 10.1038/s41587-019-0113-3. Epub 2019 May 6.
8
Deep generative modeling for single-cell transcriptomics.
Nat Methods. 2018 Dec;15(12):1053-1058. doi: 10.1038/s41592-018-0229-2. Epub 2018 Nov 30.
9
SigEMD: A powerful method for differential gene expression analysis in single-cell RNA sequencing data.
Methods. 2018 Aug 1;145:25-32. doi: 10.1016/j.ymeth.2018.04.017. Epub 2018 Apr 24.
10
DEsingle for detecting three types of differential expression in single-cell RNA-seq data.
Bioinformatics. 2018 Sep 15;34(18):3223-3224. doi: 10.1093/bioinformatics/bty332.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验