Suppr超能文献

荧光指示剂钙成像的起源。

Origins of Ca Imaging with Fluorescent Indicators.

出版信息

Biochemistry. 2021 Nov 23;60(46):3547-3554. doi: 10.1021/acs.biochem.1c00350. Epub 2021 Jul 12.

Abstract

In 1980, Roger Tsien published a paper, in this journal [Tsien, R. Y. (1980) , (11), 2396], titled "New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures". These new buffers included 1,2-bis(-aminophenoxy)ethane-,,','-tetraacetic acid, or BAPTA, which is still widely used today. And so, the world was set alight with new ways in which to visualize Ca. The ability to watch fluctuations in intracellular Ca revolutionized the life sciences, although the fluorescent indicators used today, particularly in neurobiology, no longer rely exclusively on BAPTA but on genetically encoded fluorescent Ca indicators. In this Perspective, we reflect on the origins of Ca imaging with a special focus on the contributions made by Roger Tsien, from the early concept of selective Ca binding described in to optical Ca indicators based on chemically synthesized fluorophores to genetically encoded fluorescent Ca indicators.

摘要

1980 年,Roger Tsien 在本刊发表论文[Tsien, R. Y. (1980), (11), 2396],题为“新型钙指示剂和缓冲剂,对镁和质子具有高选择性:原型结构的设计、合成和性质”。这些新的缓冲剂包括 1,2-双(-氨苯氧基)乙烷-N,N,N',N'-四乙酸,或 BAPTA,至今仍被广泛使用。于是,人们开始用新的方法来可视化 Ca。观察细胞内 Ca 波动的能力使生命科学发生了革命性的变化,尽管今天使用的荧光指示剂,特别是在神经生物学中,不再仅仅依赖于 BAPTA,而是依赖于基因编码的荧光 Ca 指示剂。在这篇观点文章中,我们特别关注 Roger Tsien 的贡献,回顾钙成像的起源,从早期在[ ]中描述的选择性 Ca 结合的概念到基于化学合成荧光团的光学 Ca 指示剂再到基因编码的荧光 Ca 指示剂。

相似文献

1
Origins of Ca Imaging with Fluorescent Indicators.
Biochemistry. 2021 Nov 23;60(46):3547-3554. doi: 10.1021/acs.biochem.1c00350. Epub 2021 Jul 12.
3
Engineering a subcellular targetable, red-emitting, and ratiometric fluorescent probe for Ca2+ and its bioimaging applications.
Anal Bioanal Chem. 2010 Jun;397(3):1245-50. doi: 10.1007/s00216-010-3650-7. Epub 2010 Mar 28.
4
Practical aspects of measuring intracellular calcium signals with fluorescent indicators.
Methods Cell Biol. 2010;99:113-52. doi: 10.1016/B978-0-12-374841-6.00005-0.
5
NMR-sensitive fluorinated and fluorescent intracellular calcium ion indicators with high dissociation constants.
Am J Physiol. 1994 May;266(5 Pt 1):C1313-22. doi: 10.1152/ajpcell.1994.266.5.C1313.
6
Bile acids induce a cationic current, depolarizing pancreatic acinar cells and increasing the intracellular Na+ concentration.
J Biol Chem. 2005 Jan 21;280(3):1764-70. doi: 10.1074/jbc.M410230200. Epub 2004 Nov 9.
7
Editorial Overview: Non-invasive molecular imaging: dedicated to the memory of Professor Roger Tsien.
Curr Opin Chem Biol. 2018 Aug;45:iv-vi. doi: 10.1016/j.cbpa.2018.07.025.
8
The 2009 Lindau Nobel Laureate Meeting: Roger Y. Tsien, Chemistry 2008.
J Vis Exp. 2010 Jan 13(35):1575. doi: 10.3791/1575.
9
Live and Let Dye.
Biochemistry. 2021 Nov 23;60(46):3539-3546. doi: 10.1021/acs.biochem.1c00299. Epub 2021 Jun 7.
10
Metal ion sensing using ion chemical exchange saturation transfer 19F magnetic resonance imaging.
J Am Chem Soc. 2013 Aug 21;135(33):12164-7. doi: 10.1021/ja403542g. Epub 2013 Aug 6.

引用本文的文献

2
Integration of signal transduction pathways in sensory epithelial enteroendocrine cells.
Mol Biol Cell. 2025 Jun 1;36(6):re3. doi: 10.1091/mbc.E24-03-0143.
4
Ratio-based indicators for cytosolic Ca with visible light excitation.
Proc Natl Acad Sci U S A. 2025 Feb 18;122(7):e2410436122. doi: 10.1073/pnas.2410436122. Epub 2025 Feb 12.
5
Hydrazone fluorescent sensors for the monitoring of toxic metals involved in human health from 2014-2024.
RSC Adv. 2025 Feb 4;15(5):3465-3473. doi: 10.1039/d4ra09068c. eCollection 2025 Jan 29.
6
Calcium Indicators with Fluorescence Lifetime-Based Signal Readout: A Structure-Function Study.
Int J Mol Sci. 2024 Nov 21;25(23):12493. doi: 10.3390/ijms252312493.
7
A synthetic method to assay polycystin channel biophysics.
Elife. 2024 Oct 28;13:RP98534. doi: 10.7554/eLife.98534.
8
Recent Advances in Photoswitchable Fluorescent and Colorimetric Probes.
Molecules. 2024 May 27;29(11):2521. doi: 10.3390/molecules29112521.
9
A synthetic method to assay polycystin channel biophysics.
bioRxiv. 2024 Aug 10:2024.05.06.592666. doi: 10.1101/2024.05.06.592666.
10
Utilization of the genetically encoded calcium indicator Salsa6F in cardiac applications.
Cell Calcium. 2024 May;119:102873. doi: 10.1016/j.ceca.2024.102873. Epub 2024 Mar 20.

本文引用的文献

1
The HaloTag as a general scaffold for far-red tunable chemigenetic indicators.
Nat Chem Biol. 2021 Jun;17(6):718-723. doi: 10.1038/s41589-021-00775-w. Epub 2021 Apr 1.
2
A near-infrared genetically encoded calcium indicator for in vivo imaging.
Nat Biotechnol. 2021 Mar;39(3):368-377. doi: 10.1038/s41587-020-0710-1. Epub 2020 Oct 26.
3
Ultrasound Technologies for Imaging and Modulating Neural Activity.
Neuron. 2020 Oct 14;108(1):93-110. doi: 10.1016/j.neuron.2020.09.003.
5
Acoustic biosensors for ultrasound imaging of enzyme activity.
Nat Chem Biol. 2020 Sep;16(9):988-996. doi: 10.1038/s41589-020-0591-0. Epub 2020 Jul 13.
6
A Multimodal Ca(II) Responsive Near IR-MR Contrast Agent Exhibiting High Cellular Uptake.
ACS Chem Biol. 2020 Feb 21;15(2):334-341. doi: 10.1021/acschembio.9b00638. Epub 2020 Jan 30.
7
Isomeric Tuning Yields Bright and Targetable Red Ca Indicators.
J Am Chem Soc. 2019 Sep 4;141(35):13734-13738. doi: 10.1021/jacs.9b06092. Epub 2019 Aug 23.
8
High-performance calcium sensors for imaging activity in neuronal populations and microcompartments.
Nat Methods. 2019 Jul;16(7):649-657. doi: 10.1038/s41592-019-0435-6. Epub 2019 Jun 17.
9
A Synthetic Fluorescent Mitochondria-Targeted Sensor for Ratiometric Imaging of Calcium in Live Cells.
Angew Chem Int Ed Engl. 2019 Jul 15;58(29):9917-9922. doi: 10.1002/anie.201902272. Epub 2019 Jun 7.
10
A genetically encoded near-infrared fluorescent calcium ion indicator.
Nat Methods. 2019 Feb;16(2):171-174. doi: 10.1038/s41592-018-0294-6. Epub 2019 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验