Center for Computational and Stochastic Mathematics, Instituto Superior Tecnico, University of Lisbon, Portugal, Lisbon, Portugal.
Departments of Biophysics and Physics, University of Michigan, Ann Arbor, United States.
Elife. 2021 Jul 22;10:e64851. doi: 10.7554/eLife.64851.
Bacterial adaptation to antibiotic combinations depends on the joint inhibitory effects of the two drugs (drug interaction [DI]) and how resistance to one drug impacts resistance to the other (collateral effects [CE]). Here we model these evolutionary dynamics on two-dimensional phenotype spaces that leverage scaling relations between the drug-response surfaces of drug-sensitive (ancestral) and drug-resistant (mutant) populations. We show that evolved resistance to the component drugs - and in turn, the adaptation of growth rate - is governed by a Price equation whose covariance terms encode geometric features of both the two-drug-response surface (DI) in ancestral cells and the correlations between resistance levels to those drugs (CE). Within this framework, mean evolutionary trajectories reduce to a type of weighted gradient dynamics, with the drug interaction dictating the shape of the underlying landscape and the collateral effects constraining the motion on those landscapes. We also demonstrate how constraints on available mutational pathways can be incorporated into the framework, adding a third key driver of evolution. Our results clarify the complex relationship between drug interactions and collateral effects in multidrug environments and illustrate how specific dosage combinations can shift the weighting of these two effects, leading to different and temporally explicit selective outcomes.
细菌对抗生素组合的适应性取决于两种药物的联合抑制作用(药物相互作用[DI]),以及一种药物的耐药性如何影响另一种药物的耐药性(间接效应[CE])。在这里,我们在二维表型空间中对这些进化动态进行建模,利用药物敏感(祖先)和耐药(突变)种群的药物反应表面之间的缩放关系。我们表明,对组成药物的进化抗性——以及生长速率的适应——受Price 方程控制,其协方差项编码了两药物反应表面(DI)在祖先细胞中的几何特征,以及这些药物的耐药水平之间的相关性(CE)。在这个框架内,平均进化轨迹简化为一种加权梯度动力学,药物相互作用决定了基础景观的形状,而间接效应则限制了在这些景观上的运动。我们还展示了如何将对可用突变途径的限制纳入框架中,增加了进化的第三个关键驱动因素。我们的结果阐明了多药环境中药物相互作用和间接效应之间的复杂关系,并说明了特定的剂量组合如何改变这两种效应的权重,从而导致不同的、具有时间性的选择结果。