Suppr超能文献

利用靶向测序预测和特征化弥漫性大 B 细胞淋巴瘤的细胞起源亚型。

Prediction and characterization of diffuse large B-cell lymphoma cell-of-origin subtypes using targeted sequencing.

机构信息

Foundation Medicine, Inc., Cambridge MA 02141, USA.

Genentech, Inc., South San Francisco, CA 94080, USA.

出版信息

Future Oncol. 2021 Nov;17(31):4171-4183. doi: 10.2217/fon-2021-0370. Epub 2021 Jul 27.

Abstract

The aim of the present study was to determine cell of origin (COO) from a platform using a DNA-based method, COO DNA classifier (COODC). A targeted exome-sequencing platform that applies the mutational profile of a sample was used to classify COO subtype. Two major mutational signatures associated with COO were identified: Catalogue of Somatic Mutations in Cancer (COSMIC) signature 23 enriched in activated B cell (ABC) and COSMIC signature 3, which suggested increased frequency in germinal center B cell (GCB). Differential mutation signatures linked oncogenesis to mutational processes during B-cell activation, confirming the putative origin of GCB and ABC subtypes. Integrating COO with comprehensive genomic profiling enabled identification of features associated with COO and demonstrated the feasibility of determining COO without RNA.

摘要

本研究旨在使用基于 DNA 的方法 COO DNA 分类器(COODC)从平台确定细胞起源(COO)。应用样本突变特征的靶向外显子组测序平台用于分类 COO 亚型。确定了与 COO 相关的两个主要突变特征:富含激活 B 细胞(ABC)的癌症体细胞突变目录(COSMIC)特征 23 和提示生发中心 B 细胞(GCB)中频率增加的 COSMIC 特征 3。与致癌作用相关的差异突变特征将其归因于 B 细胞激活过程中的突变过程,从而证实了 GCB 和 ABC 亚型的推测起源。将 COO 与全面基因组分析相结合,能够确定与 COO 相关的特征,并证明无需 RNA 即可确定 COO 的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验