Suppr超能文献

肺鳞状细胞癌的蛋白质基因组图谱。

A proteogenomic portrait of lung squamous cell carcinoma.

机构信息

Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.

Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.

出版信息

Cell. 2021 Aug 5;184(16):4348-4371.e40. doi: 10.1016/j.cell.2021.07.016.

Abstract

Lung squamous cell carcinoma (LSCC) remains a leading cause of cancer death with few therapeutic options. We characterized the proteogenomic landscape of LSCC, providing a deeper exposition of LSCC biology with potential therapeutic implications. We identify NSD3 as an alternative driver in FGFR1-amplified tumors and low-p63 tumors overexpressing the therapeutic target survivin. SOX2 is considered undruggable, but our analyses provide rationale for exploring chromatin modifiers such as LSD1 and EZH2 to target SOX2-overexpressing tumors. Our data support complex regulation of metabolic pathways by crosstalk between post-translational modifications including ubiquitylation. Numerous immune-related proteogenomic observations suggest directions for further investigation. Proteogenomic dissection of CDKN2A mutations argue for more nuanced assessment of RB1 protein expression and phosphorylation before declaring CDK4/6 inhibition unsuccessful. Finally, triangulation between LSCC, LUAD, and HNSCC identified both unique and common therapeutic vulnerabilities. These observations and proteogenomics data resources may guide research into the biology and treatment of LSCC.

摘要

肺鳞状细胞癌(LSCC)仍然是癌症死亡的主要原因,治疗选择有限。我们对 LSCC 的蛋白质基因组景观进行了特征描述,为 LSCC 生物学提供了更深入的阐述,并具有潜在的治疗意义。我们确定 NSD3 是 FGFR1 扩增肿瘤和高表达治疗靶点 survivin 的低 p63 肿瘤的替代驱动因子。SOX2 被认为是不可成药的,但我们的分析为探索组蛋白修饰剂(如 LSD1 和 EZH2)以靶向 SOX2 过表达肿瘤提供了依据。我们的数据支持包括泛素化在内的翻译后修饰之间的相互作用对代谢途径的复杂调控。大量与免疫相关的蛋白质基因组观察结果为进一步研究提供了方向。CDKN2A 突变的蛋白质基因组分析表明,在宣布 CDK4/6 抑制失败之前,需要更细致地评估 RB1 蛋白表达和磷酸化。最后,LSCC、LUAD 和 HNSCC 之间的三角关系确定了独特和共同的治疗弱点。这些观察结果和蛋白质基因组数据资源可能指导对 LSCC 生物学和治疗的研究。

相似文献

1
A proteogenomic portrait of lung squamous cell carcinoma.
Cell. 2021 Aug 5;184(16):4348-4371.e40. doi: 10.1016/j.cell.2021.07.016.
2
Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma.
Cell. 2020 Jul 9;182(1):200-225.e35. doi: 10.1016/j.cell.2020.06.013.
3
Proteogenomic landscape of squamous cell lung cancer.
Nat Commun. 2019 Aug 8;10(1):3578. doi: 10.1038/s41467-019-11452-x.
6
Clinical and Genetic Implications of Mutation Burden in Squamous Cell Carcinoma of the Lung.
Ann Surg Oncol. 2018 Jun;25(6):1564-1571. doi: 10.1245/s10434-018-6401-1. Epub 2018 Mar 2.
7
Gli1 expression in cancer stem-like cells predicts poor prognosis in patients with lung squamous cell carcinoma.
Exp Mol Pathol. 2017 Apr;102(2):347-353. doi: 10.1016/j.yexmp.2017.03.004. Epub 2017 Mar 9.
8
Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy.
Cell. 2020 Nov 25;183(5):1436-1456.e31. doi: 10.1016/j.cell.2020.10.036. Epub 2020 Nov 18.
9
Signaling pathways and targeted therapies in lung squamous cell carcinoma: mechanisms and clinical trials.
Signal Transduct Target Ther. 2022 Oct 5;7(1):353. doi: 10.1038/s41392-022-01200-x.
10
Proteogenomic Characterization of Endometrial Carcinoma.
Cell. 2020 Feb 20;180(4):729-748.e26. doi: 10.1016/j.cell.2020.01.026. Epub 2020 Feb 13.

引用本文的文献

1
Proteogenomic Analysis Identifies Clinically Relevant Subgroups of Collecting Duct Carcinoma.
Research (Wash D C). 2025 Sep 3;8:0859. doi: 10.34133/research.0859. eCollection 2025.
2
RANBP9 and RANBP10 cooperate in regulating non-small cell lung cancer proliferation.
J Exp Clin Cancer Res. 2025 Aug 29;44(1):259. doi: 10.1186/s13046-025-03491-8.
6
Self-Normalizing Multi-Omics Neural Network for Pan-Cancer Prognostication.
Int J Mol Sci. 2025 Jul 30;26(15):7358. doi: 10.3390/ijms26157358.
7
Integrative analysis of lung adenocarcinoma across diverse ethnicities and exposures.
Cancer Cell. 2025 Jul 30. doi: 10.1016/j.ccell.2025.07.011.
8
AUTO-SP: Automated Sample Preparation for Analyzing Proteins and Protein Modifications.
Anal Chem. 2025 Aug 12;97(31):16751-16758. doi: 10.1021/acs.analchem.5c00886. Epub 2025 Jul 28.
10

本文引用的文献

2
Causal interactions from proteomic profiles: Molecular data meet pathway knowledge.
Patterns (N Y). 2021 May 12;2(6):100257. doi: 10.1016/j.patter.2021.100257. eCollection 2021 Jun 11.
3
PANOPLY: a cloud-based platform for automated and reproducible proteogenomic data analysis.
Nat Methods. 2021 Jun;18(6):580-582. doi: 10.1038/s41592-021-01176-6.
4
Proteogenomic and metabolomic characterization of human glioblastoma.
Cancer Cell. 2021 Apr 12;39(4):509-528.e20. doi: 10.1016/j.ccell.2021.01.006. Epub 2021 Feb 11.
5
Elevated NSD3 histone methylation activity drives squamous cell lung cancer.
Nature. 2021 Feb;590(7846):504-508. doi: 10.1038/s41586-020-03170-y. Epub 2021 Feb 3.
6
Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma.
Cancer Cell. 2021 Mar 8;39(3):361-379.e16. doi: 10.1016/j.ccell.2020.12.007. Epub 2021 Jan 7.
7
Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy.
Cell. 2020 Nov 25;183(5):1436-1456.e31. doi: 10.1016/j.cell.2020.10.036. Epub 2020 Nov 18.
9
The National Lung Matrix Trial of personalized therapy in lung cancer.
Nature. 2020 Jul;583(7818):807-812. doi: 10.1038/s41586-020-2481-8. Epub 2020 Jul 15.
10
Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma.
Cell. 2020 Jul 9;182(1):200-225.e35. doi: 10.1016/j.cell.2020.06.013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验