Suppr超能文献

用于医疗可穿戴设备的基于甲基丙烯酰化明胶的触觉传感器。

Gelatin methacryloyl-based tactile sensors for medical wearables.

作者信息

Li Zhikang, Zhang Shiming, Chen Yihang, Ling Haonan, Zhao Libo, Luo Guoxi, Wang Xiaocheng, Hartel Martin C, Liu Hao, Xue Yumeng, Haghniaz Reihaneh, Lee KangJu, Sun Wujin, Kim Hanjun, Lee Junmin, Zhao Yichao, Zhao Yepin, Emaminejad Sam, Ahadian Samad, Ashammakhi Nureddin, Dokmeci Mehmet R, Jiang Zhuangde, Khademhosseini Ali

机构信息

Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA.

Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA.

出版信息

Adv Funct Mater. 2020 Dec 1;30(49). doi: 10.1002/adfm.202003601. Epub 2020 Sep 6.

Abstract

Gelatin methacryloyl (GelMA) is a widely used hydrogel with skin-derived gelatin acting as the main constituent. However, GelMA has not been used in the development of wearable biosensors, which are emerging devices that enable personalized healthcare monitoring. This work highlights the potential of GelMA for wearable biosensing applications by demonstrating a fully solution-processable and transparent capacitive tactile sensor with microstructured GelMA as the core dielectric layer. A robust chemical bonding and a reliable encapsulation approach are introduced to overcome detachment and water-evaporation issues in hydrogel biosensors. The resultant GelMA tactile sensor shows a high-pressure sensitivity of 0.19 kPa and one order of magnitude lower limit of detection (0.1 Pa) compared to previous hydrogel pressure sensors owing to its excellent mechanical and electrical properties (dielectric constant). Furthermore, it shows durability up to 3000 test cycles because of tough chemical bonding, and long-term stability of 3 days due to the inclusion of an encapsulation layer, which prevents water evaporation (80% water content). Successful monitoring of various human physiological and motion signals demonstrates the potential of these GelMA tactile sensors for wearable biosensing applications.

摘要

甲基丙烯酰化明胶(GelMA)是一种广泛应用的水凝胶,其主要成分是皮肤来源的明胶。然而,GelMA尚未用于可穿戴生物传感器的开发,可穿戴生物传感器是一种新兴设备,能够实现个性化医疗监测。这项工作通过展示一种以微结构化GelMA作为核心介电层的全溶液可加工且透明的电容式触觉传感器,突出了GelMA在可穿戴生物传感应用中的潜力。引入了一种强大的化学键合和可靠的封装方法,以克服水凝胶生物传感器中的分离和水蒸发问题。与之前的水凝胶压力传感器相比,所得的GelMA触觉传感器显示出0.19 kPa的高压灵敏度和低一个数量级的检测下限(0.1 Pa),这归因于其优异的机械和电学性能(介电常数)。此外,由于坚固的化学键合,它显示出高达3000次测试循环的耐久性,并且由于包含防止水蒸发(含水量80%)的封装层而具有3天的长期稳定性。对各种人体生理和运动信号的成功监测证明了这些GelMA触觉传感器在可穿戴生物传感应用中的潜力。

相似文献

1
Gelatin methacryloyl-based tactile sensors for medical wearables.
Adv Funct Mater. 2020 Dec 1;30(49). doi: 10.1002/adfm.202003601. Epub 2020 Sep 6.
4
Sensitive, Robust, Wide-Range, and High-Consistency Capacitive Tactile Sensors with Ordered Porous Dielectric Microstructures.
ACS Appl Mater Interfaces. 2024 Feb 14;16(6):7384-7398. doi: 10.1021/acsami.3c15368. Epub 2024 Feb 3.
5
Stretchable and Bioadhesive Gelatin Methacryloyl-Based Hydrogels Enabled by Dopamine Polymerization.
ACS Appl Mater Interfaces. 2021 Sep 1;13(34):40290-40301. doi: 10.1021/acsami.1c10048. Epub 2021 Aug 19.
6
Free radical-scavenging composite gelatin methacryloyl hydrogels for cell encapsulation.
Acta Biomater. 2022 Sep 1;149:96-110. doi: 10.1016/j.actbio.2022.06.043. Epub 2022 Jun 30.
7
Microstructured Polyfluoroacrylate Elastomeric Dielectric Layer for Highly Stretchable Wide-Range Capacitive Pressure Sensors.
ACS Appl Mater Interfaces. 2023 Dec 20;15(50):58700-58710. doi: 10.1021/acsami.3c14064. Epub 2023 Dec 8.
9

引用本文的文献

1
SHP099-containing multi-targeting hydrogel promotes rapid skin reconstruction through modulating a variety of cells.
Front Bioeng Biotechnol. 2025 Apr 7;13:1564827. doi: 10.3389/fbioe.2025.1564827. eCollection 2025.
2
New horizons in smart plant sensors: key technologies, applications, and prospects.
Front Plant Sci. 2025 Jan 7;15:1490801. doi: 10.3389/fpls.2024.1490801. eCollection 2024.
3
Hydrogels in wearable neural interfaces.
Med X. 2024;2(1):23. doi: 10.1007/s44258-024-00040-4. Epub 2024 Dec 9.
4
Microstructured Liquid Metal-Based Embedded-Type Sensor Array for Curved Pressure Mapping.
Adv Sci (Weinh). 2025 Jan;12(3):e2413233. doi: 10.1002/advs.202413233. Epub 2024 Nov 25.
5
Hydrogels and Aerogels for Versatile Photo-/Electro-Chemical and Energy-Related Applications.
Molecules. 2024 Aug 16;29(16):3883. doi: 10.3390/molecules29163883.
7
Wearable biosensors for human health: A bibliometric analysis from 2007 to 2022.
Digit Health. 2024 Jun 12;10:20552076241256876. doi: 10.1177/20552076241256876. eCollection 2024 Jan-Dec.
10
High-Sensitivity Flexible Capacitive Pressure Sensors Based on Biomimetic Hibiscus Flower Microstructures.
ACS Omega. 2024 Mar 15;9(12):13704-13713. doi: 10.1021/acsomega.3c08044. eCollection 2024 Mar 26.

本文引用的文献

2
Carbon Nanotubes/Hydrophobically Associated Hydrogels as Ultrastretchable, Highly Sensitive, Stable Strain, and Pressure Sensors.
ACS Appl Mater Interfaces. 2020 Jan 29;12(4):4944-4953. doi: 10.1021/acsami.9b21659. Epub 2020 Jan 17.
3
Room-Temperature-Formed PEDOT:PSS Hydrogels Enable Injectable, Soft, and Healable Organic Bioelectronics.
Adv Mater. 2020 Jan;32(1):e1904752. doi: 10.1002/adma.201904752. Epub 2019 Oct 28.
4
Respiration rate and volume measurements using wearable strain sensors.
NPJ Digit Med. 2019 Feb 13;2:8. doi: 10.1038/s41746-019-0083-3. eCollection 2019.
5
Flexible and Washable Poly(Ionic Liquid) Nanofibrous Membrane with Moisture Proof Pressure Sensing for Real-Life Wearable Electronics.
ACS Appl Mater Interfaces. 2019 Jul 31;11(30):27200-27209. doi: 10.1021/acsami.9b07786. Epub 2019 Jul 18.
6
Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications.
Microsyst Nanoeng. 2016 Sep 26;2:16043. doi: 10.1038/micronano.2016.43. eCollection 2016.
8
Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation.
Nat Biomed Eng. 2019 Jan;3(1):58-68. doi: 10.1038/s41551-018-0335-6. Epub 2019 Jan 8.
9
Stretchable Conductive Polymers and Composites Based on PEDOT and PEDOT:PSS.
Adv Mater. 2019 Mar;31(10):e1806133. doi: 10.1002/adma.201806133. Epub 2019 Jan 2.
10
A Self-Healing, All-Organic, Conducting, Composite Peptide Hydrogel as Pressure Sensor and Electrogenic Cell Soft Substrate.
ACS Nano. 2019 Jan 22;13(1):163-175. doi: 10.1021/acsnano.8b05067. Epub 2018 Dec 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验