Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
Chemogenomic and Biological Screening Core Facility, Institut Pasteur, Paris, France.
Nat Microbiol. 2021 Sep;6(9):1188-1198. doi: 10.1038/s41564-021-00954-4. Epub 2021 Aug 16.
SARS-CoV-2 variants of interest and concern will continue to emerge for the duration of the COVID-19 pandemic. To map mutations in the receptor-binding domain (RBD) of the spike protein that affect binding to angiotensin-converting enzyme 2 (ACE2), the receptor for SARS-CoV-2, we applied in vitro evolution to affinity-mature the RBD. Multiple rounds of random mutagenic libraries of the RBD were sorted against decreasing concentrations of ACE2, resulting in the selection of higher affinity RBD binders. We found that mutations present in more transmissible viruses (S477N, E484K and N501Y) were preferentially selected in our high-throughput screen. Evolved RBD mutants include prominently the amino acid substitutions found in the RBDs of B.1.620, B.1.1.7 (Alpha), B1.351 (Beta) and P.1 (Gamma) variants. Moreover, the incidence of RBD mutations in the population as presented in the GISAID database (April 2021) is positively correlated with increased binding affinity to ACE2. Further in vitro evolution increased binding by 1,000-fold and identified mutations that may be more infectious if they evolve in the circulating viral population, for example, Q498R is epistatic to N501Y. We show that our high-affinity variant RBD-62 can be used as a drug to inhibit infection with SARS-CoV-2 and variants Alpha, Beta and Gamma in vitro. In a model of SARS-CoV-2 challenge in hamster, RBD-62 significantly reduced clinical disease when administered before or after infection. A 2.9 Å cryo-electron microscopy structure of the high-affinity complex of RBD-62 and ACE2, including all rapidly spreading mutations, provides a structural basis for future drug and vaccine development and for in silico evaluation of known antibodies.
SARS-CoV-2 的变异株将在 COVID-19 大流行期间持续出现。为了绘制影响与 SARS-CoV-2 受体血管紧张素转换酶 2(ACE2)结合的刺突蛋白受体结合域(RBD)突变图谱,我们对 RBD 进行了体外进化以提高亲和力。通过针对 ACE2 浓度降低的 RBD 随机突变文库进行多轮分选,选择出了具有更高亲和力的 RBD 结合物。我们发现,在更具传染性的病毒中存在的突变(S477N、E484K 和 N501Y)在我们的高通量筛选中被优先选择。进化后的 RBD 突变体包括 B.1.620、B.1.1.7(Alpha)、B1.351(Beta)和 P.1(Gamma)变体中存在的 RBD 氨基酸取代。此外,GISAID 数据库(2021 年 4 月)中出现的 RBD 突变在人群中的发生率与 ACE2 结合亲和力的增加呈正相关。进一步的体外进化使结合亲和力提高了 1000 倍,并鉴定出如果在循环病毒种群中进化,可能更具传染性的突变,例如 Q498R 与 N501Y 是上位性的。我们表明,我们的高亲和力 RBD-62 变体可用于抑制 SARS-CoV-2 及其 Alpha、Beta 和 Gamma 变体在体外的感染。在仓鼠 SARS-CoV-2 攻毒模型中,RBD-62 在感染前或感染后给药均可显著减轻临床疾病。RBD-62 与 ACE2 的高亲和力复合物的 2.9 Å 冷冻电镜结构,包括所有快速传播的突变,为未来的药物和疫苗开发以及已知抗体的计算机评估提供了结构基础。