Suppr超能文献

DLpTCR:一种用于预测 T 细胞受体识别的免疫原性肽的集成深度学习框架。

DLpTCR: an ensemble deep learning framework for predicting immunogenic peptide recognized by T cell receptor.

机构信息

Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China.

Center for Bioinformatics, Computer Department, Jingdezhen Ceramic Institute, Jingdezhen 333403, China.

出版信息

Brief Bioinform. 2021 Nov 5;22(6). doi: 10.1093/bib/bbab335.

Abstract

Accurate prediction of immunogenic peptide recognized by T cell receptor (TCR) can greatly benefit vaccine development and cancer immunotherapy. However, identifying immunogenic peptides accurately is still a huge challenge. Most of the antigen peptides predicted in silico fail to elicit immune responses in vivo without considering TCR as a key factor. This inevitably causes costly and time-consuming experimental validation test for predicted antigens. Therefore, it is necessary to develop novel computational methods for precisely and effectively predicting immunogenic peptide recognized by TCR. Here, we described DLpTCR, a multimodal ensemble deep learning framework for predicting the likelihood of interaction between single/paired chain(s) of TCR and peptide presented by major histocompatibility complex molecules. To investigate the generality and robustness of the proposed model, COVID-19 data and IEDB data were constructed for independent evaluation. The DLpTCR model exhibited high predictive power with area under the curve up to 0.91 on COVID-19 data while predicting the interaction between peptide and single TCR chain. Additionally, the DLpTCR model achieved the overall accuracy of 81.03% on IEDB data while predicting the interaction between peptide and paired TCR chains. The results demonstrate that DLpTCR has the ability to learn general interaction rules and generalize to antigen peptide recognition by TCR. A user-friendly webserver is available at http://jianglab.org.cn/DLpTCR/. Additionally, a stand-alone software package that can be downloaded from https://github.com/jiangBiolab/DLpTCR.

摘要

准确预测 T 细胞受体 (TCR) 识别的免疫肽,可极大地促进疫苗开发和癌症免疫治疗。然而,准确识别免疫肽仍然是一个巨大的挑战。大多数在计算机中预测的抗原肽在体内无法引发免疫反应,因为没有考虑 TCR 是一个关键因素。这不可避免地导致预测抗原的昂贵和耗时的实验验证测试。因此,有必要开发新的计算方法,以精确有效地预测 TCR 识别的免疫肽。在这里,我们描述了 DLpTCR,这是一个用于预测 TCR 单链/双链与 MHC 分子呈递的肽之间相互作用可能性的多模态集成深度学习框架。为了研究所提出模型的通用性和稳健性,我们构建了 COVID-19 数据和 IEDB 数据进行独立评估。DLpTCR 模型在 COVID-19 数据上预测 TCR 单链与肽相互作用时表现出高达 0.91 的曲线下面积的高预测能力。此外,DLpTCR 模型在预测 TCR 对肽的配对链相互作用时,整体准确率达到 81.03%。结果表明,DLpTCR 具有学习一般相互作用规则并推广到 TCR 识别抗原肽的能力。一个用户友好的网页服务器可在 http://jianglab.org.cn/DLpTCR/ 上获得。此外,还可以从 https://github.com/jiangBiolab/DLpTCR 下载独立的软件包。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验