Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland; Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland.
Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland.
Semin Cell Dev Biol. 2022 Jan;121:171-185. doi: 10.1016/j.semcdb.2021.08.007. Epub 2021 Aug 22.
The three-dimensional structure of the human genome has been proven to have a significant functional impact on gene expression. The high-order spatial chromatin is organised first by looping mediated by multiple protein factors, and then it is further formed into larger structures of topologically associated domains (TADs) or chromatin contact domains (CCDs), followed by A/B compartments and finally the chromosomal territories (CTs). The genetic variation observed in human population influences the multi-scale structures, posing a question regarding the functional impact of structural variants reflected by the variability of the genes expression patterns. The current methods of evaluating the functional effect include eQTLs analysis which uses statistical testing of influence of variants on spatially close genes. Rarely, non-coding DNA sequence changes are evaluated by their impact on the biomolecular interaction network (BIN) reflecting the cellular interactome that can be analysed by the classical graph-theoretic algorithms. Therefore, in the second part of the review, we introduce the concept of BIN, i.e. a meta-network model of the complete molecular interactome developed by integrating various biological networks. The BIN meta-network model includes DNA-protein binding by the plethora of protein factors as well as chromatin interactions, therefore allowing connection of genomics with the downstream biomolecular processes present in a cell. As an illustration, we scrutinise the chromatin interactions mediated by the CTCF protein detected in a ChIA-PET experiment in the human lymphoblastoid cell line GM12878. In the corresponding BIN meta-network the DNA spatial proximity is represented as a graph model, combined with the Proteins-Interaction Network (PIN) of human proteome using the Gene Association Network (GAN). Furthermore, we enriched the BIN with the signalling and metabolic pathways and Gene Ontology (GO) terms to assert its functional context. Finally, we mapped the Single Nucleotide Polymorphisms (SNPs) from the GWAS studies and identified the chromatin mutational hot-spots associated with a significant enrichment of SNPs related to autoimmune diseases. Afterwards, we mapped Structural Variants (SVs) from healthy individuals of 1000 Genomes Project and identified an interesting example of the missing protein complex associated with protein Q6GYQ0 due to a deletion on chromosome 14. Such an analysis using the meta-network BIN model is therefore helpful in evaluating the influence of genetic variation on spatial organisation of the genome and its functional effect in a cell.
人类基因组的三维结构已被证明对基因表达具有重要的功能影响。高级空间染色质首先通过多种蛋白质因子介导的环介导进行组织,然后进一步形成拓扑关联域(TADs)或染色质接触域(CCDs)的更大结构,接着是 A/B 区室,最后是染色体区域(CTs)。人群中观察到的遗传变异影响多尺度结构,提出了一个问题,即基因表达模式的变异性反映的结构变异的功能影响。目前评估功能影响的方法包括通过变体对空间上接近的基因的影响进行统计检验的 eQTLs 分析。很少有非编码 DNA 序列变化通过其对反映细胞相互作用组的生物分子相互作用网络(BIN)的影响来评估,可通过经典的图论算法进行分析。因此,在综述的第二部分,我们介绍了 BIN 的概念,即通过整合各种生物网络开发的完整分子相互作用组的元网络模型。BIN 元网络模型包括大量蛋白质因子的 DNA-蛋白质结合以及染色质相互作用,从而允许将基因组学与细胞中存在的下游生物分子过程连接起来。作为说明,我们仔细研究了在人类淋巴母细胞系 GM12878 中的 ChIA-PET 实验中检测到的 CTCF 蛋白介导的染色质相互作用。在相应的 BIN 元网络中,DNA 空间邻近性表示为图形模型,同时使用基因关联网络(GAN)将其与人类蛋白质组的蛋白质相互作用网络(PIN)相结合。此外,我们使用信号和代谢途径和基因本体论(GO)术语丰富了 BIN,以确定其功能上下文。最后,我们映射了 GWAS 研究中的单核苷酸多态性(SNP),并确定了与自身免疫性疾病相关的 SNP 显著富集相关的染色质突变热点。之后,我们从 1000 个基因组计划的健康个体中映射了结构变体(SV),并确定了由于 14 号染色体缺失导致与蛋白质 Q6GYQ0 相关的缺失的缺失的蛋白质复合物的有趣例子。因此,使用元网络 BIN 模型进行此类分析有助于评估遗传变异对基因组空间组织及其在细胞中的功能影响。