Suppr超能文献

鸡肉中的情况:消费、疫情、特征、当前控制方法及噬菌体应用潜力

in Chicken Meat: Consumption, Outbreaks, Characteristics, Current Control Methods and the Potential of Bacteriophage Use.

作者信息

Wessels Kirsten, Rip Diane, Gouws Pieter

机构信息

Centre for Food Safety, Department of Food Science, Stellenbosch University, Stellenbosch 7600, South Africa.

出版信息

Foods. 2021 Jul 28;10(8):1742. doi: 10.3390/foods10081742.

Abstract

The control of in chicken processing plants is an ongoing challenge for many factories around the globe, especially with the increasing demand for poultry escalating processing throughputs. Foodborne outbreaks due to still pose a prominent risk to public health. As chicken meat is a good reservoir for , it is important for chicken processing plants to continuously optimize methods to reduce the incidence of on their products. Current methods include the use of chemical antimicrobials such as chlorine-containing compounds and organic acids. However, these current methods are decreasing in popularity due to the rising rate of resistance, coupled with the challenge of preserving the sensory properties of the meat, along with the increasing stringency of antimicrobial use. Bacteriophages are becoming more appealing to integrate into the large-scale hurdle concept. A few factors need to be considered for successful implementation, such as legislation, and application volumes and concentrations. Overall, bacteriophages show great potential because of their host specificity, guaranteeing an alternative outcome to the selective pressure for resistant traits placed by chemicals on whole microbial communities.

摘要

在鸡肉加工厂中控制[此处原文缺失具体内容]对全球许多工厂来说仍是一项持续的挑战,尤其是随着对家禽需求的增加,加工产量不断攀升。由[此处原文缺失具体内容]引起的食源性疾病暴发仍然对公众健康构成重大风险。由于鸡肉是[此处原文缺失具体内容]的良好宿主,鸡肉加工厂不断优化方法以降低其产品上[此处原文缺失具体内容]的发生率非常重要。目前的方法包括使用化学抗菌剂,如含氯化合物和有机酸。然而,由于[此处原文缺失具体内容]耐药性的上升,再加上保持肉类感官特性的挑战以及抗菌剂使用的日益严格,这些现有方法的受欢迎程度正在下降。噬菌体在融入大规模障碍概念方面正变得更具吸引力。成功实施需要考虑一些因素,如法规、应用量和浓度。总体而言,噬菌体因其宿主特异性而显示出巨大潜力,可确保替代化学物质对整个微生物群落产生耐药性状的选择压力所带来的结果。

相似文献

2
Reduction of Salmonella on chicken meat and chicken skin by combined or sequential application of lytic bacteriophage with chemical antimicrobials.
Int J Food Microbiol. 2015 Aug 17;207:8-15. doi: 10.1016/j.ijfoodmicro.2015.04.025. Epub 2015 Apr 24.
4
Bacteriophage application on red meats and poultry: Effects on Salmonella population in final ground products.
Meat Sci. 2017 May;127:30-34. doi: 10.1016/j.meatsci.2017.01.001. Epub 2017 Jan 9.
5
Reduction of Nontyphoidal Salmonella enterica in Broth and on Raw Chicken Breast by a Broad-spectrum Bacteriophage Cocktail.
J Food Prot. 2024 Jan;87(1):100207. doi: 10.1016/j.jfp.2023.100207. Epub 2023 Dec 22.
6
Salmonella and Campylobacter: Antimicrobial resistance and bacteriophage control in poultry.
Food Microbiol. 2016 Feb;53(Pt B):104-9. doi: 10.1016/j.fm.2015.09.008. Epub 2015 Sep 11.
7
Use of Cocktail of Bacteriophage for Typhimurium Control in Chicken Meat.
Foods. 2022 Apr 17;11(8):1164. doi: 10.3390/foods11081164.
8
Application of Eugenol in Poultry to Control Colonization and Spread.
Vet Sci. 2023 Feb 13;10(2):151. doi: 10.3390/vetsci10020151.
10
Practical Preventive Considerations for Reducing the Public Health Burden of Poultry-Related Salmonellosis.
Int J Environ Res Public Health. 2023 Aug 25;20(17):6654. doi: 10.3390/ijerph20176654.

引用本文的文献

2
Characterization of Salmonella adaptation in response to phage treatment in broiler chickens.
Vet Res. 2025 Aug 8;56(1):167. doi: 10.1186/s13567-025-01589-7.
5
Methods of Controlling Microbial Contamination of Food.
Pathogens. 2025 May 16;14(5):492. doi: 10.3390/pathogens14050492.
6
Detection and antibiotic resistance of Salmonella isolates from selected poultry farms in Dar es Salaam, Tanzania.
Access Microbiol. 2025 May 21;7(5). doi: 10.1099/acmi.0.000879.v5. eCollection 2025.
7
Genomic insights into the serovar prevalence, antimicrobial resistance gene, and genetic diversity of Salmonella enterica in Mexico.
PLoS One. 2025 May 15;20(5):e0323872. doi: 10.1371/journal.pone.0323872. eCollection 2025.
9
Incorporation of probiotics in post-harvest wash treatments reduces Salmonella contamination and improves egg safety.
Poult Sci. 2025 Jun;104(6):105146. doi: 10.1016/j.psj.2025.105146. Epub 2025 Apr 9.
10
Bayesian phylogeographic analysis infers cross-border transmission dynamics of drug-resistant Enteritidis.
Microbiol Spectr. 2025 Mar 4;13(3):e0229224. doi: 10.1128/spectrum.02292-24. Epub 2025 Feb 7.

本文引用的文献

1
A Dynamic Method for Broad-Spectrum Bacteriophage Cocktail Formulation Against Poultry-Associated .
Phage (New Rochelle). 2020 Jun 1;1(2):109-117. doi: 10.1089/phage.2020.0002. Epub 2020 Jun 16.
2
Effects of lactic, malic and fumaric acids on spp. counts and on chicken meat quality and sensory characteristics.
J Food Sci Technol. 2021 Oct;58(10):3817-3824. doi: 10.1007/s13197-020-04842-3. Epub 2020 Oct 24.
3
, Food Safety and Food Handling Practices.
Foods. 2021 Apr 21;10(5):907. doi: 10.3390/foods10050907.
5
Effectiveness of Phage-Based Inhibition of in Food Products and Food Processing Environments.
Microorganisms. 2020 Nov 10;8(11):1764. doi: 10.3390/microorganisms8111764.
6
Accurate and sensitive detection of Salmonella in foods by engineered bacteriophages.
Sci Rep. 2020 Oct 15;10(1):17463. doi: 10.1038/s41598-020-74587-8.
7
Phage S144, A New Polyvalent Phage Infecting spp. and .
Int J Mol Sci. 2020 Jul 22;21(15):5196. doi: 10.3390/ijms21155196.
8
Non-Typhoidal at the Human-Food-of-Animal-Origin Interface in Australia.
Animals (Basel). 2020 Jul 14;10(7):1192. doi: 10.3390/ani10071192.
9
Reduction of Salmonella contamination on the surface of chicken skin using bacteriophage.
Virol J. 2020 Jul 9;17(1):98. doi: 10.1186/s12985-020-01368-0.
10
Bacteriophage Therapy: Developments and Directions.
Antibiotics (Basel). 2020 Mar 24;9(3):135. doi: 10.3390/antibiotics9030135.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验