Suppr超能文献

鼠小脑细胞顺式调控元件的发育和进化动态。

Developmental and evolutionary dynamics of cis-regulatory elements in mouse cerebellar cells.

机构信息

Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany.

Hopp Children's Cancer Center (KiTZ) Heidelberg, Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany.

出版信息

Science. 2021 Aug 27;373(6558). doi: 10.1126/science.abg4696. Epub 2021 Jul 29.

Abstract

Organ development is orchestrated by cell- and time-specific gene regulatory networks. In this study, we investigated the regulatory basis of mouse cerebellum development from early neurogenesis to adulthood. By acquiring snATAC-seq (single-nucleus assay for transposase accessible chromatin using sequencing) profiles for ~90,000 cells spanning 11 stages, we mapped cerebellar cell types and identified candidate cisregulatory elements (CREs). We detected extensive spatiotemporal heterogeneity among progenitor cells and a gradual divergence in the regulatory programs of cerebellar neurons during differentiation. Comparisons to vertebrate genomes and snATAC-seq profiles for ∼20,000 cerebellar cells from the marsupial opossum revealed a shared decrease in CRE conservation during development and differentiation as well as differences in constraint between cell types. Our work delineates the developmental and evolutionary dynamics of gene regulation in cerebellar cells and provides insights into mammalian organ development.

摘要

器官发育是由细胞和时间特异性的基因调控网络协调的。在这项研究中,我们研究了从小鼠神经发生到成年期的小脑发育的调控基础。通过对跨越 11 个阶段的约 90,000 个细胞进行 snATAC-seq(使用测序的转座酶可及染色质的单细胞分析)分析,我们绘制了小脑细胞类型并鉴定了候选顺式调控元件(CREs)。我们在祖细胞中检测到广泛的时空异质性,并在分化过程中发现小脑神经元的调控程序逐渐分歧。与脊椎动物基因组和来自有袋动物负鼠的约 20,000 个小脑细胞的 snATAC-seq 图谱进行比较,揭示了在发育和分化过程中 CRE 保守性的共同下降,以及细胞类型之间的约束差异。我们的工作描绘了小脑细胞中基因调控的发育和进化动态,并为哺乳动物器官发育提供了新的见解。

相似文献

1
Developmental and evolutionary dynamics of cis-regulatory elements in mouse cerebellar cells.
Science. 2021 Aug 27;373(6558). doi: 10.1126/science.abg4696. Epub 2021 Jul 29.
2
Cellular development and evolution of the mammalian cerebellum.
Nature. 2024 Jan;625(7996):788-796. doi: 10.1038/s41586-023-06884-x. Epub 2023 Nov 29.
3
Can clues from evolution unlock the molecular development of the cerebellum?
Mol Neurobiol. 2011 Feb;43(1):67-76. doi: 10.1007/s12035-010-8160-2. Epub 2010 Dec 21.
4
Quantitative analysis of cis-regulatory elements in transcription with KAS-ATAC-seq.
Nat Commun. 2024 Aug 10;15(1):6852. doi: 10.1038/s41467-024-50680-8.
5
Development and evolution of cerebellar neural circuits.
Dev Growth Differ. 2012 Apr;54(3):373-89. doi: 10.1111/j.1440-169X.2012.01348.x.
7
Cell-type-specific effects of genetic variation on chromatin accessibility during human neuronal differentiation.
Nat Neurosci. 2021 Jul;24(7):941-953. doi: 10.1038/s41593-021-00858-w. Epub 2021 May 20.
9
Consensus Paper: Cerebellar Development.
Cerebellum. 2016 Dec;15(6):789-828. doi: 10.1007/s12311-015-0724-2.

引用本文的文献

1
Uncovering hidden enhancers through unbiased in vivo testing.
Nat Commun. 2025 Aug 8;16(1):7313. doi: 10.1038/s41467-025-62497-0.
2
Conference Report: Cerebellar Development and Disease at Single-Cell Resolution.
Cerebellum. 2025 Jun 5;24(4):109. doi: 10.1007/s12311-025-01864-5.
3
Telomemore enables single-cell analysis of cell cycle and chromatin condensation.
Nucleic Acids Res. 2025 Jan 24;53(3). doi: 10.1093/nar/gkaf031.
4
Multimodal transcriptomics reveal neurogenic aging trajectories and age-related regional inflammation in the dentate gyrus.
Nat Neurosci. 2025 Feb;28(2):415-430. doi: 10.1038/s41593-024-01848-4. Epub 2025 Jan 6.
5
A single-cell mass cytometry-based atlas of the developing mouse brain.
Nat Neurosci. 2025 Jan;28(1):174-188. doi: 10.1038/s41593-024-01786-1. Epub 2024 Dec 18.
6
FUT8 Regulates Cerebellar Neurogenesis and Development Through Maintaining the Level of Neural Cell Adhesion Molecule Cntn2.
Mol Neurobiol. 2025 May;62(5):5679-5694. doi: 10.1007/s12035-024-04620-8. Epub 2024 Nov 27.
8
Single-nucleus multi-omics identifies shared and distinct pathways in Pick's and Alzheimer's disease.
bioRxiv. 2024 Sep 8:2024.09.06.611761. doi: 10.1101/2024.09.06.611761.
9
Flexible use of conserved motif vocabularies constrains genome access in cell type evolution.
bioRxiv. 2024 Sep 6:2024.09.03.611027. doi: 10.1101/2024.09.03.611027.
10
Dissecting the regulatory logic of specification and differentiation during vertebrate embryogenesis.
bioRxiv. 2024 Aug 27:2024.08.27.609971. doi: 10.1101/2024.08.27.609971.

本文引用的文献

1
A shared transcriptional code orchestrates temporal patterning of the central nervous system.
PLoS Biol. 2021 Nov 12;19(11):e3001450. doi: 10.1371/journal.pbio.3001450. eCollection 2021 Nov.
2
An atlas of gene regulatory elements in adult mouse cerebrum.
Nature. 2021 Oct;598(7879):129-136. doi: 10.1038/s41586-021-03604-1. Epub 2021 Oct 6.
3
Molecular logic of cellular diversification in the mouse cerebral cortex.
Nature. 2021 Jul;595(7868):554-559. doi: 10.1038/s41586-021-03670-5. Epub 2021 Jun 23.
5
ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis.
Nat Genet. 2021 Mar;53(3):403-411. doi: 10.1038/s41588-021-00790-6. Epub 2021 Feb 25.
7
A human cell atlas of fetal chromatin accessibility.
Science. 2020 Nov 13;370(6518). doi: 10.1126/science.aba7612.
8
An atlas of dynamic chromatin landscapes in mouse fetal development.
Nature. 2020 Jul;583(7818):744-751. doi: 10.1038/s41586-020-2093-3. Epub 2020 Jul 29.
9
Index and biological spectrum of human DNase I hypersensitive sites.
Nature. 2020 Aug;584(7820):244-251. doi: 10.1038/s41586-020-2559-3. Epub 2020 Jul 29.
10
Chromatin accessibility dynamics in a model of human forebrain development.
Science. 2020 Jan 24;367(6476). doi: 10.1126/science.aay1645.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验