Suppr超能文献

克氏锥虫内阿米巴滋养体的代谢灵活性:对持久性和药物敏感性的影响。

Metabolic flexibility in Trypanosoma cruzi amastigotes: implications for persistence and drug sensitivity.

机构信息

Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, United States.

Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, United States.

出版信息

Curr Opin Microbiol. 2021 Oct;63:244-249. doi: 10.1016/j.mib.2021.07.017. Epub 2021 Aug 26.

Abstract

Throughout their life cycle, parasitic organisms experience a variety of environmental conditions. To ensure persistence and transmission, some protozoan parasites are capable of adjusting their replication or converting to distinct life cycle stages. Trypanosoma cruzi is a 'generalist' parasite that is competent to infect various insect (triatomine) vectors and mammalian hosts. Within the mammalian host, T. cruzi replicates intracellularly as amastigotes and can persist for the lifetime of the host. The persistence of the parasites in tissues can lead to the development of Chagas disease. Recent work has identified growth plasticity and metabolic flexibility as aspects of amastigote biology that are important determinants of persistence in varied growth conditions and under drug pressure. A better understanding of the link between amastigote and host/tissue metabolism will aid in the development of new drugs or therapies that can limit disease pathology.

摘要

在整个生命周期中,寄生虫体会经历各种环境条件。为了确保生存和传播,一些原生动物寄生虫能够调整其复制或转化为不同的生命周期阶段。克氏锥虫是一种“多面手”寄生虫,能够感染各种昆虫(三锥虫)媒介和哺乳动物宿主。在哺乳动物宿主中,克氏锥虫作为无鞭毛体在细胞内复制,可以在宿主的整个生命周期中持续存在。寄生虫在组织中的持续存在会导致恰加斯病的发生。最近的研究已经确定了生长可塑性和代谢灵活性是无鞭毛体生物学的重要方面,它们是在不同的生长条件下和药物压力下持续存在的重要决定因素。更好地理解无鞭毛体与宿主/组织代谢之间的联系将有助于开发新的药物或疗法,从而限制疾病的病理。

相似文献

1
Metabolic flexibility in Trypanosoma cruzi amastigotes: implications for persistence and drug sensitivity.
Curr Opin Microbiol. 2021 Oct;63:244-249. doi: 10.1016/j.mib.2021.07.017. Epub 2021 Aug 26.
2
Stress-Induced Proliferation and Cell Cycle Plasticity of Intracellular Amastigotes.
mBio. 2018 Jul 10;9(4):e00673-18. doi: 10.1128/mBio.00673-18.
3
Modulation of host central carbon metabolism and in situ glucose uptake by intracellular Trypanosoma cruzi amastigotes.
PLoS Pathog. 2017 Nov 27;13(11):e1006747. doi: 10.1371/journal.ppat.1006747. eCollection 2017 Nov.
4
Trypanosoma cruzi amastigote transcriptome analysis reveals heterogenous populations with replicating and dormant parasites.
Microbes Infect. 2024 Jan-Feb;26(1-2):105240. doi: 10.1016/j.micinf.2023.105240. Epub 2023 Oct 20.
5
The Intracellular Amastigote of Trypanosoma cruzi Maintains an Actively Beating Flagellum.
mBio. 2023 Apr 25;14(2):e0355622. doi: 10.1128/mbio.03556-22. Epub 2023 Feb 22.
6
Methods for the Investigation of Trypanosoma cruzi Amastigote Proliferation in Mammalian Host Cells.
Methods Mol Biol. 2020;2116:535-554. doi: 10.1007/978-1-0716-0294-2_32.

引用本文的文献

1
Host Organelle Interactions Facilitate Cholesterol Acquisition by Trypanosoma cruzi Amastigotes.
J Eukaryot Microbiol. 2025 Jul-Aug;72(4):e70027. doi: 10.1111/jeu.70027.
2
Tranylcypromine-Based LSD1 Inhibitors as Useful Agents to Reduce Viability of .
ACS Infect Dis. 2025 Aug 8;11(8):2178-2189. doi: 10.1021/acsinfecdis.5c00224. Epub 2025 Jul 2.
3
The importance of persistence and dormancy in Trypanosoma cruzi infection and Chagas disease.
Curr Opin Microbiol. 2025 Jun 5;86:102615. doi: 10.1016/j.mib.2025.102615.
4
Small molecule mediators of host-T. cruzi-environment interactions in Chagas disease.
PLoS Pathog. 2024 Mar 8;20(3):e1012012. doi: 10.1371/journal.ppat.1012012. eCollection 2024 Mar.
5
Molecular Mechanisms of Persistence in Protozoan Parasites.
Microorganisms. 2023 Sep 7;11(9):2248. doi: 10.3390/microorganisms11092248.
6
Single-Cell Mass Spectrometry Enables Insight into Heterogeneity in Infectious Disease.
Anal Chem. 2022 Aug 2;94(30):10567-10572. doi: 10.1021/acs.analchem.2c02279. Epub 2022 Jul 21.
7
Endogenous Sterol Synthesis Is Dispensable for Epimastigote Growth but Not Stress Tolerance.
Front Microbiol. 2022 Jun 17;13:937910. doi: 10.3389/fmicb.2022.937910. eCollection 2022.

本文引用的文献

1
Clinically relevant mutations in core metabolic genes confer antibiotic resistance.
Science. 2021 Feb 19;371(6531). doi: 10.1126/science.aba0862.
3
amastigotes that persist in the colon during chronic stage murine infections have a reduced replication rate.
Open Biol. 2020 Dec;10(12):200261. doi: 10.1098/rsob.200261. Epub 2020 Dec 16.
4
Glutamine metabolism modulates azole susceptibility in amastigotes.
Elife. 2020 Dec 1;9:e60226. doi: 10.7554/eLife.60226.
5
Nutrient sensing in Leishmania: Flagellum and cytosol.
Mol Microbiol. 2021 May;115(5):849-859. doi: 10.1111/mmi.14635. Epub 2020 Nov 21.
6
Genome-scale metabolic models highlight stage-specific differences in essential metabolic pathways in Trypanosoma cruzi.
PLoS Negl Trop Dis. 2020 Oct 6;14(10):e0008728. doi: 10.1371/journal.pntd.0008728. eCollection 2020 Oct.
7
Mapping of host-parasite-microbiome interactions reveals metabolic determinants of tropism and tolerance in Chagas disease.
Sci Adv. 2020 Jul 22;6(30):eaaz2015. doi: 10.1126/sciadv.aaz2015. eCollection 2020 Jul.
8
A new model for heme homeostasis depends on modulation of HTE protein expression.
J Biol Chem. 2020 Sep 18;295(38):13202-13212. doi: 10.1074/jbc.RA120.014574. Epub 2020 Jul 23.
9
Acquisition of exogenous fatty acids renders apicoplast-based biosynthesis dispensable in tachyzoites of .
J Biol Chem. 2020 May 29;295(22):7743-7752. doi: 10.1074/jbc.RA120.013004. Epub 2020 Apr 27.
10
Functional and Computational Genomics Reveal Unprecedented Flexibility in Stage-Specific Toxoplasma Metabolism.
Cell Host Microbe. 2020 Feb 12;27(2):290-306.e11. doi: 10.1016/j.chom.2020.01.002. Epub 2020 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验