Suppr超能文献

CRISPR/Cas-9介导的基因组编辑的机制与应用

Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing.

作者信息

Asmamaw Misganaw, Zawdie Belay

机构信息

Division of Biochemistry, Department of Biomedical Sciences, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia.

Division of Biochemistry, Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia.

出版信息

Biologics. 2021 Aug 21;15:353-361. doi: 10.2147/BTT.S326422. eCollection 2021.

Abstract

Clustered regularly interspaced short palindromic repeat (CRISPR) and their associated protein (Cas-9) is the most effective, efficient, and accurate method of genome editing tool in all living cells and utilized in many applied disciplines. Guide RNA (gRNA) and CRISPR-associated (Cas-9) proteins are the two essential components in CRISPR/Cas-9 system. The mechanism of CRISPR/Cas-9 genome editing contains three steps, recognition, cleavage, and repair. The designed sgRNA recognizes the target sequence in the gene of interest through a complementary base pair. While the Cas-9 nuclease makes double-stranded breaks at a site 3 base pair upstream to protospacer adjacent motif, then the double-stranded break is repaired by either non-homologous end joining or homology-directed repair cellular mechanisms. The CRISPR/Cas-9 genome-editing tool has a wide number of applications in many areas including medicine, agriculture, and biotechnology. In agriculture, it could help in the design of new grains to improve their nutritional value. In medicine, it is being investigated for cancers, HIV, and gene therapy such as sickle cell disease, cystic fibrosis, and Duchenne muscular dystrophy. The technology is also being utilized in the regulation of specific genes through the advanced modification of Cas-9 protein. However, immunogenicity, effective delivery systems, off-target effect, and ethical issues have been the major barriers to extend the technology in clinical applications. Although CRISPR/Cas-9 becomes a new era in molecular biology and has countless roles ranging from basic molecular researches to clinical applications, there are still challenges to rub in the practical applications and various improvements are needed to overcome obstacles.

摘要

成簇规律间隔短回文重复序列(CRISPR)及其相关蛋白(Cas - 9)是所有活细胞中最有效、高效且准确的基因组编辑工具,已应用于许多学科领域。引导RNA(gRNA)和CRISPR相关(Cas - 9)蛋白是CRISPR/Cas - 9系统的两个关键组成部分。CRISPR/Cas - 9基因组编辑机制包括识别、切割和修复三个步骤。设计的sgRNA通过互补碱基对识别目标基因中的靶序列。而Cas - 9核酸酶在原间隔相邻基序上游3个碱基对处的位点产生双链断裂,然后双链断裂通过非同源末端连接或同源定向修复细胞机制进行修复。CRISPR/Cas - 9基因组编辑工具在医学、农业和生物技术等许多领域有广泛应用。在农业方面,它有助于设计新的谷物以提高其营养价值。在医学上,正在对癌症、艾滋病以及镰状细胞病、囊性纤维化和杜氏肌营养不良症等基因治疗进行研究。该技术还通过对Cas - 9蛋白的先进修饰用于调控特定基因。然而,免疫原性、有效的递送系统、脱靶效应和伦理问题一直是该技术在临床应用中推广的主要障碍。尽管CRISPR/Cas - 9开启了分子生物学的新纪元,在从基础分子研究到临床应用等方面有着无数作用,但在实际应用中仍存在挑战,需要进行各种改进以克服障碍。

相似文献

1
Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing.
Biologics. 2021 Aug 21;15:353-361. doi: 10.2147/BTT.S326422. eCollection 2021.
2
Optimization of genome editing through CRISPR-Cas9 engineering.
Bioengineered. 2016 Apr;7(3):166-74. doi: 10.1080/21655979.2016.1189039.
3
4
The CRISPR-Cas system for plant genome editing: advances and opportunities.
J Exp Bot. 2015 Jan;66(1):47-57. doi: 10.1093/jxb/eru429. Epub 2014 Nov 4.
5
RNA-guided genome editing in plants using a CRISPR-Cas system.
Mol Plant. 2013 Nov;6(6):1975-83. doi: 10.1093/mp/sst119. Epub 2013 Aug 17.
6
Dramatic Improvement of CRISPR/Cas9 Editing in by Increased Single Guide RNA Expression.
mSphere. 2017 Apr 19;2(2). doi: 10.1128/mSphere.00385-16. eCollection 2017 Mar-Apr.
8
Enhancement of single guide RNA transcription for efficient CRISPR/Cas-based genomic engineering.
Genome. 2017 Jun;60(6):537-545. doi: 10.1139/gen-2016-0127. Epub 2017 Jan 26.
9
Recent Advancements in Reducing the Off-Target Effect of CRISPR-Cas9 Genome Editing.
Biologics. 2024 Jan 18;18:21-28. doi: 10.2147/BTT.S429411. eCollection 2024.
10
CRISPR-Cas nucleases and base editors for plant genome editing.
aBIOTECH. 2019 Nov 30;1(1):74-87. doi: 10.1007/s42994-019-00010-0. eCollection 2020 Jan.

引用本文的文献

2
CRISPR/Cas9 in colorectal cancer: Revolutionizing precision oncology through genome editing and targeted therapeutics.
Iran J Basic Med Sci. 2025;28(10):1279-1300. doi: 10.22038/ijbms.2025.87531.18902.
3
CRISPR in Neurodegenerative Diseases Treatment: An Alternative Approach to Current Therapies.
Genes (Basel). 2025 Jul 22;16(8):850. doi: 10.3390/genes16080850.
6
Tapping the microalgal potential: genetic precision and stress-induction for enhanced astaxanthin and biofuel production.
Biotechnol Biofuels Bioprod. 2025 Aug 14;18(1):92. doi: 10.1186/s13068-025-02656-z.
8
Nucleic Acid-based Therapy in Effective Management of Rheumatoid Arthritis.
Curr Pharm Des. 2025;31(22):1755-1766. doi: 10.2174/0113816128331823241121055205.
9
Refined DNA repair manipulation enables a universal knock-in strategy in mouse embryos.
Nat Commun. 2025 Jul 15;16(1):6502. doi: 10.1038/s41467-025-61696-z.
10
Applications of CRISPR-Cas9 in mitigating cellular senescence and age-related disease progression.
Clin Exp Med. 2025 Jul 8;25(1):237. doi: 10.1007/s10238-025-01771-3.

本文引用的文献

1
delivery of CRISPR-Cas9 therapeutics: Progress and challenges.
Acta Pharm Sin B. 2021 Aug;11(8):2150-2171. doi: 10.1016/j.apsb.2021.05.020. Epub 2021 May 26.
2
Lipid- and Polymer-Based Nanoparticle Systems for the Delivery of CRISPR/Cas9.
J Drug Deliv Sci Technol. 2021 Oct;65. doi: 10.1016/j.jddst.2021.102728. Epub 2021 Jul 11.
3
New Therapies to Correct the Cystic Fibrosis Basic Defect.
Int J Mol Sci. 2021 Jun 8;22(12):6193. doi: 10.3390/ijms22126193.
4
CRISPR/Cas9: Principle, Applications, and Delivery through Extracellular Vesicles.
Int J Mol Sci. 2021 Jun 4;22(11):6072. doi: 10.3390/ijms22116072.
5
Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing.
Front Genet. 2021 May 12;12:673286. doi: 10.3389/fgene.2021.673286. eCollection 2021.
6
Prime editing - an update on the field.
Gene Ther. 2021 Aug;28(7-8):396-401. doi: 10.1038/s41434-021-00263-9. Epub 2021 May 24.
7
Promising therapeutic approaches using CRISPR/Cas9 genome editing technology in the treatment of Duchenne muscular dystrophy.
Genes Dis. 2020 Jan 8;8(2):146-156. doi: 10.1016/j.gendis.2019.12.007. eCollection 2021 Mar.
8
Progression and application of CRISPR-Cas genomic editors.
Methods. 2021 Oct;194:65-74. doi: 10.1016/j.ymeth.2021.03.013. Epub 2021 Mar 25.
9
Innovative Therapeutic Approaches for Duchenne Muscular Dystrophy.
J Clin Med. 2021 Feb 17;10(4):820. doi: 10.3390/jcm10040820.
10
Genome editing technologies: CRISPR, LEAPER, RESTORE, ARCUT, SATI, and RESCUE.
EXCLI J. 2021 Jan 4;20:19-45. doi: 10.17179/excli2020-3070. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验