MGH Radiology and Harvard Medical School, Boston, MA, USA.
NVIDIA, Santa Clara, CA, USA.
Nat Med. 2021 Oct;27(10):1735-1743. doi: 10.1038/s41591-021-01506-3. Epub 2021 Sep 15.
Federated learning (FL) is a method used for training artificial intelligence models with data from multiple sources while maintaining data anonymity, thus removing many barriers to data sharing. Here we used data from 20 institutes across the globe to train a FL model, called EXAM (electronic medical record (EMR) chest X-ray AI model), that predicts the future oxygen requirements of symptomatic patients with COVID-19 using inputs of vital signs, laboratory data and chest X-rays. EXAM achieved an average area under the curve (AUC) >0.92 for predicting outcomes at 24 and 72 h from the time of initial presentation to the emergency room, and it provided 16% improvement in average AUC measured across all participating sites and an average increase in generalizability of 38% when compared with models trained at a single site using that site's data. For prediction of mechanical ventilation treatment or death at 24 h at the largest independent test site, EXAM achieved a sensitivity of 0.950 and specificity of 0.882. In this study, FL facilitated rapid data science collaboration without data exchange and generated a model that generalized across heterogeneous, unharmonized datasets for prediction of clinical outcomes in patients with COVID-19, setting the stage for the broader use of FL in healthcare.
联邦学习(FL)是一种在保持数据匿名性的同时,利用来自多个来源的数据训练人工智能模型的方法,从而消除了数据共享的许多障碍。在这里,我们使用了来自全球 20 个研究所的数据来训练一个名为 EXAM(电子病历(EMR)胸部 X 射线 AI 模型)的联邦学习模型,该模型使用生命体征、实验室数据和胸部 X 射线来预测有症状的 COVID-19 患者的未来氧气需求。EXAM 在预测急诊科就诊后 24 小时和 72 小时的结果时,平均曲线下面积(AUC)>0.92,与在单个站点使用该站点数据训练的模型相比,它在所有参与站点的平均 AUC 测量中提高了 16%,并提高了 38%的泛化能力。对于在最大的独立测试站点预测 24 小时内机械通气治疗或死亡的情况,EXAM 的敏感性为 0.950,特异性为 0.882。在这项研究中,FL 促进了快速的数据科学合作,而无需进行数据交换,并生成了一个可以在异构、不统一的数据集之间进行泛化预测 COVID-19 患者临床结果的模型,为 FL 在医疗保健中的更广泛应用奠定了基础。