Suppr超能文献

基于联邦学习的 COVID-19 患者临床结局预测

Federated learning for predicting clinical outcomes in patients with COVID-19.

机构信息

MGH Radiology and Harvard Medical School, Boston, MA, USA.

NVIDIA, Santa Clara, CA, USA.

出版信息

Nat Med. 2021 Oct;27(10):1735-1743. doi: 10.1038/s41591-021-01506-3. Epub 2021 Sep 15.

Abstract

Federated learning (FL) is a method used for training artificial intelligence models with data from multiple sources while maintaining data anonymity, thus removing many barriers to data sharing. Here we used data from 20 institutes across the globe to train a FL model, called EXAM (electronic medical record (EMR) chest X-ray AI model), that predicts the future oxygen requirements of symptomatic patients with COVID-19 using inputs of vital signs, laboratory data and chest X-rays. EXAM achieved an average area under the curve (AUC) >0.92 for predicting outcomes at 24 and 72 h from the time of initial presentation to the emergency room, and it provided 16% improvement in average AUC measured across all participating sites and an average increase in generalizability of 38% when compared with models trained at a single site using that site's data. For prediction of mechanical ventilation treatment or death at 24 h at the largest independent test site, EXAM achieved a sensitivity of 0.950 and specificity of 0.882. In this study, FL facilitated rapid data science collaboration without data exchange and generated a model that generalized across heterogeneous, unharmonized datasets for prediction of clinical outcomes in patients with COVID-19, setting the stage for the broader use of FL in healthcare.

摘要

联邦学习(FL)是一种在保持数据匿名性的同时,利用来自多个来源的数据训练人工智能模型的方法,从而消除了数据共享的许多障碍。在这里,我们使用了来自全球 20 个研究所的数据来训练一个名为 EXAM(电子病历(EMR)胸部 X 射线 AI 模型)的联邦学习模型,该模型使用生命体征、实验室数据和胸部 X 射线来预测有症状的 COVID-19 患者的未来氧气需求。EXAM 在预测急诊科就诊后 24 小时和 72 小时的结果时,平均曲线下面积(AUC)>0.92,与在单个站点使用该站点数据训练的模型相比,它在所有参与站点的平均 AUC 测量中提高了 16%,并提高了 38%的泛化能力。对于在最大的独立测试站点预测 24 小时内机械通气治疗或死亡的情况,EXAM 的敏感性为 0.950,特异性为 0.882。在这项研究中,FL 促进了快速的数据科学合作,而无需进行数据交换,并生成了一个可以在异构、不统一的数据集之间进行泛化预测 COVID-19 患者临床结果的模型,为 FL 在医疗保健中的更广泛应用奠定了基础。

相似文献

1
Federated learning for predicting clinical outcomes in patients with COVID-19.
Nat Med. 2021 Oct;27(10):1735-1743. doi: 10.1038/s41591-021-01506-3. Epub 2021 Sep 15.
2
Federated Learning used for predicting outcomes in SARS-COV-2 patients.
Res Sq. 2021 Jan 8:rs.3.rs-126892. doi: 10.21203/rs.3.rs-126892/v1.
3
Prognostication of patients with COVID-19 using artificial intelligence based on chest x-rays and clinical data: a retrospective study.
Lancet Digit Health. 2021 May;3(5):e286-e294. doi: 10.1016/S2589-7500(21)00039-X. Epub 2021 Mar 24.
4
Methods and Impact for Using Federated Learning to Collaborate on Clinical Research.
Neurosurgery. 2023 Feb 1;92(2):431-438. doi: 10.1227/neu.0000000000002198. Epub 2022 Nov 8.
6
Learning From Past Respiratory Infections to Predict COVID-19 Outcomes: Retrospective Study.
J Med Internet Res. 2021 Feb 22;23(2):e23026. doi: 10.2196/23026.
7
Federated Learning in Glaucoma: A Comprehensive Review and Future Perspectives.
Ophthalmol Glaucoma. 2025 Jan-Feb;8(1):92-105. doi: 10.1016/j.ogla.2024.08.004. Epub 2024 Aug 29.
9
Individualized prediction of COVID-19 adverse outcomes with MLHO.
Sci Rep. 2021 Mar 5;11(1):5322. doi: 10.1038/s41598-021-84781-x.
10
The value of federated learning during and post-COVID-19.
Int J Qual Health Care. 2021 Mar 4;33(1). doi: 10.1093/intqhc/mzab010.

引用本文的文献

3
Navigating real-world challenges: A case study on federated learning in computational pathology.
J Pathol Inform. 2025 Jul 23;18:100464. doi: 10.1016/j.jpi.2025.100464. eCollection 2025 Aug.
4
The coming decade of digital brain research: A vision for neuroscience at the intersection of technology and computing.
Imaging Neurosci (Camb). 2024 Apr 18;2. doi: 10.1162/imag_a_00137. eCollection 2024.
5
Artificial Intelligence in Cardiovascular Imaging: Current Landscape, Clinical Impact, and Future Directions.
Discoveries (Craiova). 2025 Jun 30;13(1):e211. doi: 10.15190/d.2025.10. eCollection 2025 Apr-Jun.
6
Deep Learning Network Selection and Optimized Information Fusion for Enhanced COVID-19 Detection: A Literature Review.
Diagnostics (Basel). 2025 Jul 21;15(14):1830. doi: 10.3390/diagnostics15141830.
7
Federated Learning-Based Model for Predicting Mortality: Systematic Review and Meta-Analysis.
J Med Internet Res. 2025 Jul 21;27:e65708. doi: 10.2196/65708.
9
MTMedFormer: multi-task vision transformer for medical imaging with federated learning.
Med Biol Eng Comput. 2025 Jul 8. doi: 10.1007/s11517-025-03404-z.
10
Federated target trial emulation using distributed observational data for treatment effect estimation.
NPJ Digit Med. 2025 Jul 1;8(1):387. doi: 10.1038/s41746-025-01803-y.

本文引用的文献

1
Federated Gradient Averaging for Multi-Site Training with Momentum-Based Optimizers.
Lect Notes Monogr Ser. 2020 Oct;12444. doi: 10.1007/978-3-030-60548-3_17. Epub 2020 Sep 26.
2
Deep metric learning-based image retrieval system for chest radiograph and its clinical applications in COVID-19.
Med Image Anal. 2021 May;70:101993. doi: 10.1016/j.media.2021.101993. Epub 2021 Feb 7.
3
Federated semi-supervised learning for COVID region segmentation in chest CT using multi-national data from China, Italy, Japan.
Med Image Anal. 2021 May;70:101992. doi: 10.1016/j.media.2021.101992. Epub 2021 Feb 6.
4
Predicting COVID-19 mortality with electronic medical records.
NPJ Digit Med. 2021 Feb 4;4(1):15. doi: 10.1038/s41746-021-00383-x.
6
Integrative analysis for COVID-19 patient outcome prediction.
Med Image Anal. 2021 Jan;67:101844. doi: 10.1016/j.media.2020.101844. Epub 2020 Oct 13.
7
Joint prediction and time estimation of COVID-19 developing severe symptoms using chest CT scan.
Med Image Anal. 2021 Jan;67:101824. doi: 10.1016/j.media.2020.101824. Epub 2020 Oct 10.
8
Deep transfer learning for reducing health care disparities arising from biomedical data inequality.
Nat Commun. 2020 Oct 12;11(1):5131. doi: 10.1038/s41467-020-18918-3.
9
The future of digital health with federated learning.
NPJ Digit Med. 2020 Sep 14;3:119. doi: 10.1038/s41746-020-00323-1. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验