Suppr超能文献

基于人工智能的策略用于靶向递送和增强基于RNA的脂质纳米颗粒癌症疫苗的稳定性

Artificial Intelligence-Driven Strategies for Targeted Delivery and Enhanced Stability of RNA-Based Lipid Nanoparticle Cancer Vaccines.

作者信息

Bhujel Ripesh, Enkmann Viktoria, Burgstaller Hannes, Maharjan Ravi

机构信息

Dhulikhel Hospital, Dhulikhel 45210, Nepal.

RNAAnalytics Advanced Research GmbH, Frauentorgasse 72-74, 3430 Tulln, Austria.

出版信息

Pharmaceutics. 2025 Jul 30;17(8):992. doi: 10.3390/pharmaceutics17080992.

Abstract

The convergence of artificial intelligence (AI) and nanomedicine has transformed cancer vaccine development, particularly in optimizing RNA-loaded lipid nanoparticles (LNPs). Stability and targeted delivery are major obstacles to the clinical translation of promising RNA-LNP vaccines for cancer immunotherapy. This systematic review analyzes the AI's impact on LNP engineering through machine learning-driven predictive models, generative adversarial networks (GANs) for novel lipid design, and neural network-enhanced biodistribution prediction. AI reduces the therapeutic development timeline through accelerated virtual screening of millions of lipid combinations, compared to conventional high-throughput screening. Furthermore, AI-optimized LNPs demonstrate improved tumor targeting. GAN-generated lipids show structural novelty while maintaining higher encapsulation efficiency; graph neural networks predict RNA-LNP binding affinity with high accuracy vs. experimental data; digital twins reduce lyophilization optimization from years to months; and federated learning models enable multi-institutional data sharing. We propose a framework to address key technical challenges: training data quality (min. 15,000 lipid structures), model interpretability (SHAP > 0.65), and regulatory compliance (21CFR Part 11). AI integration reduces manufacturing costs and makes personalized cancer vaccine affordable. Future directions need to prioritize quantum machine learning for stability prediction and edge computing for real-time formulation modifications.

摘要

人工智能(AI)与纳米医学的融合改变了癌症疫苗的研发,尤其是在优化负载RNA的脂质纳米颗粒(LNP)方面。稳定性和靶向递送是有前景的RNA-LNP疫苗用于癌症免疫治疗临床转化的主要障碍。本系统综述分析了AI通过机器学习驱动的预测模型、用于新型脂质设计的生成对抗网络(GAN)以及神经网络增强的生物分布预测对LNP工程的影响。与传统的高通量筛选相比,AI通过加速对数百万种脂质组合的虚拟筛选,缩短了治疗研发时间线。此外,AI优化的LNP显示出更好的肿瘤靶向性。GAN生成的脂质在保持较高包封效率的同时展现出结构新颖性;图神经网络相对于实验数据能高精度预测RNA-LNP的结合亲和力;数字孪生将冻干优化时间从数年缩短至数月;联合学习模型实现了多机构数据共享。我们提出了一个框架来应对关键技术挑战:训练数据质量(至少15,000种脂质结构)、模型可解释性(SHAP>0.65)和法规合规性(21 CFR Part 11)。AI整合降低了制造成本,使个性化癌症疫苗变得可负担得起。未来的方向需要优先考虑用于稳定性预测的量子机器学习和用于实时制剂修改的边缘计算。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e48a/12389219/491e2b1fb9e1/pharmaceutics-17-00992-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验