Suppr超能文献

复制压力下芽殖酵母 Rad53 连接前导链和滞后链 DNA 合成的机制。

A mechanism for Rad53 to couple leading- and lagging-strand DNA synthesis under replication stress in budding yeast.

机构信息

Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032.

Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032.

出版信息

Proc Natl Acad Sci U S A. 2021 Sep 21;118(38). doi: 10.1073/pnas.2109334118.

Abstract

In response to DNA replication stress, DNA replication checkpoint kinase Mec1 phosphorylates Mrc1, which in turn activates Rad53 to prevent the generation of deleterious single-stranded DNA, a process that remains poorly understood. We previously reported that lagging-strand DNA synthesis proceeds farther than leading strand in mutant cells defective in replication checkpoint under replication stress, resulting in the exposure of long stretches of the leading-strand templates. Here, we show that asymmetric DNA synthesis is also observed in and cells defective in replication checkpoint but, surprisingly, not in cells in which both DNA replication and checkpoint functions of Mrc1 are missing. Furthermore, depletion of either Mrc1 or its partner, Tof1, suppresses the asymmetric DNA synthesis in mutant cells. Thus, the DNA replication checkpoint pathway couples leading- and lagging-strand DNA synthesis by attenuating the replication function of Mrc1-Tof1 under replication stress.

摘要

在应对 DNA 复制压力时,DNA 复制检查点激酶 Mek1 磷酸化 Mrc1,进而激活 Rad53 以防止产生有害的单链 DNA,这个过程仍知之甚少。我们之前曾报道,在复制检查点有缺陷的突变细胞中,滞后链 DNA 合成的进展超过了领头链,从而导致领头链模板暴露了很长一段,这一过程在复制压力下仍未得到很好的理解。在这里,我们发现复制检查点有缺陷的细胞也会出现不对称 DNA 合成,但令人惊讶的是,在 Mrc1 的 DNA 复制和检查点功能都缺失的 细胞中,却没有出现这种现象。此外,Mrc1 或其伴侣 Tof1 的消耗也能抑制 突变细胞中的不对称 DNA 合成。因此,DNA 复制检查点途径通过在复制压力下减弱 Mrc1-Tof1 的复制功能来偶联领头链和滞后链 DNA 的合成。

相似文献

2
Checkpoint Kinase Rad53 Couples Leading- and Lagging-Strand DNA Synthesis under Replication Stress.
Mol Cell. 2017 Oct 19;68(2):446-455.e3. doi: 10.1016/j.molcel.2017.09.018. Epub 2017 Oct 12.
3
Rad53 arrests leading and lagging strand DNA synthesis via distinct mechanisms in response to DNA replication stress.
Bioessays. 2022 Sep;44(9):e2200061. doi: 10.1002/bies.202200061. Epub 2022 Jul 1.
7
Mrc1 and Rad9 cooperate to regulate initiation and elongation of DNA replication in response to DNA damage.
EMBO J. 2018 Nov 2;37(21). doi: 10.15252/embj.201899319. Epub 2018 Aug 29.
8
Reconstitution of Rad53 activation by Mec1 through adaptor protein Mrc1.
J Biol Chem. 2009 Jul 10;284(28):18593-604. doi: 10.1074/jbc.M109.018242. Epub 2009 May 19.
9
Colocalization of Mec1 and Mrc1 is sufficient for Rad53 phosphorylation in vivo.
Mol Biol Cell. 2012 Mar;23(6):1058-67. doi: 10.1091/mbc.E11-10-0852. Epub 2012 Feb 1.
10
Mec1 Is Activated at the Onset of Normal S Phase by Low-dNTP Pools Impeding DNA Replication.
Mol Cell. 2020 May 7;78(3):396-410.e4. doi: 10.1016/j.molcel.2020.02.021. Epub 2020 Mar 12.

引用本文的文献

1
A tale of two strands: Decoding chromatin replication through strand-specific sequencing.
Mol Cell. 2025 Jan 16;85(2):238-261. doi: 10.1016/j.molcel.2024.10.035.
2
Revised mechanism of hydroxyurea-induced cell cycle arrest and an improved alternative.
Proc Natl Acad Sci U S A. 2024 Oct 15;121(42):e2404470121. doi: 10.1073/pnas.2404470121. Epub 2024 Oct 7.
3
The TIMELESS and PARP1 interaction suppresses replication-associated DNA gap accumulation.
Nucleic Acids Res. 2024 Jun 24;52(11):6424-6440. doi: 10.1093/nar/gkae445.
5
Poly(ADP-ribosyl)ation of TIMELESS limits DNA replication stress and promotes stalled fork protection.
Cell Rep. 2024 Mar 26;43(3):113845. doi: 10.1016/j.celrep.2024.113845. Epub 2024 Feb 22.
6
Checkpoint kinase interaction with DNA polymerase alpha regulates replication progression during stress.
Wellcome Open Res. 2023 Jul 26;8:327. doi: 10.12688/wellcomeopenres.19617.1. eCollection 2023.
7
The Adaptive Mechanisms and Checkpoint Responses to a Stressed DNA Replication Fork.
Int J Mol Sci. 2023 Jun 22;24(13):10488. doi: 10.3390/ijms241310488.
9
The TIMELESS effort for timely DNA replication and protection.
Cell Mol Life Sci. 2023 Mar 9;80(4):84. doi: 10.1007/s00018-023-04738-3.
10
Asymmetric Histone Inheritance: Establishment, Recognition, and Execution.
Annu Rev Genet. 2022 Nov 30;56:113-143. doi: 10.1146/annurev-genet-072920-125226. Epub 2022 Jul 29.

本文引用的文献

2
Checkpoint-mediated DNA polymerase ε exonuclease activity curbing counteracts resection-driven fork collapse.
Mol Cell. 2021 Jul 1;81(13):2778-2792.e4. doi: 10.1016/j.molcel.2021.04.006. Epub 2021 Apr 30.
3
In-depth and 3-dimensional exploration of the budding yeast phosphoproteome.
EMBO Rep. 2021 Feb 3;22(2):e51121. doi: 10.15252/embr.202051121. Epub 2021 Jan 25.
4
Cryo-EM Structure of the Fork Protection Complex Bound to CMG at a Replication Fork.
Mol Cell. 2020 Jun 4;78(5):926-940.e13. doi: 10.1016/j.molcel.2020.04.012. Epub 2020 May 4.
5
Mrc1 and Rad9 cooperate to regulate initiation and elongation of DNA replication in response to DNA damage.
EMBO J. 2018 Nov 2;37(21). doi: 10.15252/embj.201899319. Epub 2018 Aug 29.
6
The DNA Pol ϵ stimulatory activity of Mrc1 is modulated by phosphorylation.
Cell Cycle. 2018;17(1):64-72. doi: 10.1080/15384101.2017.1403680. Epub 2017 Dec 21.
7
Checkpoint Kinase Rad53 Couples Leading- and Lagging-Strand DNA Synthesis under Replication Stress.
Mol Cell. 2017 Oct 19;68(2):446-455.e3. doi: 10.1016/j.molcel.2017.09.018. Epub 2017 Oct 12.
8
Both DNA Polymerases δ and ε Contact Active and Stalled Replication Forks Differently.
Mol Cell Biol. 2017 Oct 13;37(21). doi: 10.1128/MCB.00190-17. Print 2017 Nov 1.
9
Independent and Stochastic Action of DNA Polymerases in the Replisome.
Cell. 2017 Jun 15;169(7):1201-1213.e17. doi: 10.1016/j.cell.2017.05.041.
10
Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention.
Science. 2017 Mar 24;355(6331):1330-1334. doi: 10.1126/science.aaf9011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验