Suppr超能文献

全身正电子发射断层扫描成像技术评估胶质母细胞瘤中 T 细胞反应

Whole-body PET Imaging of T-cell Response to Glioblastoma.

机构信息

Department of Radiology, Stanford University, Stanford, California.

Department of Bioengineering, Stanford University, Stanford, California.

出版信息

Clin Cancer Res. 2021 Dec 1;27(23):6445-6456. doi: 10.1158/1078-0432.CCR-21-1412. Epub 2021 Sep 21.

Abstract

PURPOSE

Immunotherapy is a promising approach for many oncological malignancies, including glioblastoma, however, there are currently no available tools or biomarkers to accurately assess whole-body immune responses in patients with glioblastoma treated with immunotherapy. Here, the utility of OX40, a costimulatory molecule mainly expressed on activated effector T cells known to play an important role in eliminating cancer cells, was evaluated as a PET imaging biomarker to quantify and track response to immunotherapy.

EXPERIMENTAL DESIGN

A subcutaneous vaccination approach of CpG oligodeoxynucleotide, OX40 mAb, and tumor lysate at a remote site in a murine orthotopic glioma model was developed to induce activation of T cells distantly while monitoring their distribution in stimulated lymphoid organs with respect to observed therapeutic effects. To detect OX40-positive T cells, we utilized our in-house-developed Zr-DFO-OX40 mAb and PET/CT imaging.

RESULTS

ImmunoPET with Zr-DFO-OX40 mAb revealed strong OX40-positive responses with high specificity, not only in the nearest lymph node from vaccinated area (mean, 20.8%ID/cc) but also in the spleen (16.7%ID/cc) and the tumor draining lymph node (11.4%ID/cc). When the tumor was small (<10 p/sec/cm/sr in bioluminescence imaging), a high number of responders and percentage shrinkage in tumor signal was indicated after only a single cycle of vaccination.

CONCLUSIONS

The results highlight the promise of clinically translating cancer vaccination as a potential glioma therapy, as well as the benefits of monitoring efficacy of these treatments using immunoPET imaging of T-cell activation.

摘要

目的

免疫疗法是许多肿瘤恶性肿瘤的一种很有前途的方法,包括胶质母细胞瘤,然而,目前还没有可用的工具或生物标志物来准确评估接受免疫治疗的胶质母细胞瘤患者的全身免疫反应。在这里,评估 OX40(一种主要在活化效应 T 细胞上表达的共刺激分子,已知在消除癌细胞方面发挥重要作用)作为 PET 成像生物标志物的效用,以定量和跟踪对免疫疗法的反应。

实验设计

在鼠原位胶质母细胞瘤模型中,采用皮下接种 CpG 寡脱氧核苷酸、OX40 mAb 和肿瘤裂解物的方法,在远处诱导 T 细胞的活化,同时监测其在刺激的淋巴器官中的分布,以观察治疗效果。为了检测 OX40 阳性 T 细胞,我们利用了我们内部开发的 Zr-DFO-OX40 mAb 和 PET/CT 成像。

结果

Zr-DFO-OX40 mAb 的免疫 PET 显示出强烈的 OX40 阳性反应,具有很高的特异性,不仅在接种区域最近的淋巴结(平均 20.8%ID/cc),而且在脾脏(16.7%ID/cc)和肿瘤引流淋巴结(11.4%ID/cc)中。当肿瘤较小时(生物发光成像中<10 p/sec/cm/sr),在单次接种周期后,指示出大量的反应者和肿瘤信号的百分比收缩。

结论

这些结果突出了将癌症疫苗接种作为一种潜在的胶质母细胞瘤治疗方法进行临床转化的前景,以及使用 T 细胞活化的免疫 PET 成像监测这些治疗效果的益处。

相似文献

1
Whole-body PET Imaging of T-cell Response to Glioblastoma.
Clin Cancer Res. 2021 Dec 1;27(23):6445-6456. doi: 10.1158/1078-0432.CCR-21-1412. Epub 2021 Sep 21.
4
A radiopharmaceutical [Zr]Zr-DFO-nimotuzumab for immunoPET with epidermal growth factor receptor expression in vivo.
Nucl Med Biol. 2019 Mar;70:23-31. doi: 10.1016/j.nucmedbio.2019.01.007. Epub 2019 Feb 8.
5
In vivo vaccination with tumor cell lysate plus CpG oligodeoxynucleotides eradicates murine glioblastoma.
J Immunother. 2007 Nov-Dec;30(8):789-97. doi: 10.1097/CJI.0b013e318155a0f6.
6
Immuno-PET Imaging of CD69 Visualizes T-Cell Activation and Predicts Survival Following Immunotherapy in Murine Glioblastoma.
Cancer Res Commun. 2023 Jul 6;3(7):1173-1188. doi: 10.1158/2767-9764.CRC-22-0434. eCollection 2023 Jul.
8
Visualization of Activated T Cells by OX40-ImmunoPET as a Strategy for Diagnosis of Acute Graft-versus-Host Disease.
Cancer Res. 2020 Nov 1;80(21):4780-4790. doi: 10.1158/0008-5472.CAN-20-1149. Epub 2020 Sep 8.
9
Detection of immune responses after immunotherapy in glioblastoma using PET and MRI.
Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):10220-10225. doi: 10.1073/pnas.1706689114. Epub 2017 Sep 5.

引用本文的文献

2
Overcoming barriers in glioblastoma: The potential of CAR T cell immunotherapy.
Theranostics. 2025 Jun 12;15(14):7090-7126. doi: 10.7150/thno.114257. eCollection 2025.
3
Exploring molecular imaging to investigate immune checkpoint inhibitor-related toxicity.
J Immunother Cancer. 2025 May 7;13(5):e011009. doi: 10.1136/jitc-2024-011009.
4
Imaging antigen processing and presentation in cancer.
Immunother Adv. 2025 Feb 4;5(1):ltaf002. doi: 10.1093/immadv/ltaf002. eCollection 2025.
5
Editorial: Tumor microenvironment and beyond: imaging systemic immunity with PET.
Front Med (Lausanne). 2024 Dec 23;11:1535802. doi: 10.3389/fmed.2024.1535802. eCollection 2024.
6
Radiopharmaceuticals and their applications in medicine.
Signal Transduct Target Ther. 2025 Jan 3;10(1):1. doi: 10.1038/s41392-024-02041-6.
7
Making the effect visible - OX40 targeting nanobodies for imaging of activated T cells.
Front Immunol. 2024 Oct 15;15:1480091. doi: 10.3389/fimmu.2024.1480091. eCollection 2024.
8
Illuminating immunotherapy response via precision T cell-targeted PET imaging.
Front Med (Lausanne). 2024 Jul 22;11:1233913. doi: 10.3389/fmed.2024.1233913. eCollection 2024.
9
PET Imaging for Monitoring Cellular and Immunotherapy of Cancer.
Cancer J. 2024;30(3):153-158. doi: 10.1097/PPO.0000000000000722.
10
Immuno-PET Imaging of CD69 Visualizes T-Cell Activation and Predicts Survival Following Immunotherapy in Murine Glioblastoma.
Cancer Res Commun. 2023 Jul 6;3(7):1173-1188. doi: 10.1158/2767-9764.CRC-22-0434. eCollection 2023 Jul.

本文引用的文献

1
Immunotherapy Goes Local: The Central Role of Lymph Nodes in Driving Tumor Infiltration and Efficacy.
Front Immunol. 2021 Mar 1;12:643291. doi: 10.3389/fimmu.2021.643291. eCollection 2021.
2
Evaluation of image quality with four positron emitters and three preclinical PET/CT systems.
EJNMMI Res. 2020 Dec 10;10(1):155. doi: 10.1186/s13550-020-00724-z.
3
Non-invasive biomarkers for monitoring the immunotherapeutic response to cancer.
J Transl Med. 2020 Dec 9;18(1):471. doi: 10.1186/s12967-020-02656-7.
4
Molecular Imaging of Chimeric Antigen Receptor T Cells by ICOS-ImmunoPET.
Clin Cancer Res. 2021 Feb 15;27(4):1058-1068. doi: 10.1158/1078-0432.CCR-20-2770. Epub 2020 Oct 21.
5
OX40 agonists for cancer treatment: a patent review.
Expert Opin Ther Pat. 2021 Jan;31(1):81-90. doi: 10.1080/13543776.2021.1825688. Epub 2020 Oct 6.
6
Visualization of Activated T Cells by OX40-ImmunoPET as a Strategy for Diagnosis of Acute Graft-versus-Host Disease.
Cancer Res. 2020 Nov 1;80(21):4780-4790. doi: 10.1158/0008-5472.CAN-20-1149. Epub 2020 Sep 8.
8
PET imaging of macrophages in cardiovascular diseases.
Am J Transl Res. 2020 May 15;12(5):1491-1514. eCollection 2020.
9
A guide to cancer immunotherapy: from T cell basic science to clinical practice.
Nat Rev Immunol. 2020 Nov;20(11):651-668. doi: 10.1038/s41577-020-0306-5. Epub 2020 May 20.
10
ICOS Is an Indicator of T-cell-Mediated Response to Cancer Immunotherapy.
Cancer Res. 2020 Jul 15;80(14):3023-3032. doi: 10.1158/0008-5472.CAN-19-3265. Epub 2020 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验