Suppr超能文献

在体追踪重新审视星形胶质细胞向神经元的转化。

Revisiting astrocyte to neuron conversion with lineage tracing in vivo.

机构信息

Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

出版信息

Cell. 2021 Oct 14;184(21):5465-5481.e16. doi: 10.1016/j.cell.2021.09.005. Epub 2021 Sep 27.

Abstract

In vivo cell fate conversions have emerged as potential regeneration-based therapeutics for injury and disease. Recent studies reported that ectopic expression or knockdown of certain factors can convert resident astrocytes into functional neurons with high efficiency, region specificity, and precise connectivity. However, using stringent lineage tracing in the mouse brain, we show that the presumed astrocyte-converted neurons are actually endogenous neurons. AAV-mediated co-expression of NEUROD1 and a reporter specifically and efficiently induces reporter-labeled neurons. However, these neurons cannot be traced retrospectively to quiescent or reactive astrocytes using lineage-mapping strategies. Instead, through a retrograde labeling approach, our results reveal that endogenous neurons are the source for these viral-reporter-labeled neurons. Similarly, despite efficient knockdown of PTBP1 in vivo, genetically traced resident astrocytes were not converted into neurons. Together, our results highlight the requirement of lineage-tracing strategies, which should be broadly applied to studies of cell fate conversions in vivo.

摘要

体内细胞命运转变已成为治疗损伤和疾病的有潜力的基于再生的治疗方法。最近的研究报告称,异位表达或敲低某些因子可以高效、区域特异性和精确连接地将固有星形胶质细胞转化为功能性神经元。然而,我们通过在小鼠大脑中使用严格的谱系追踪表明,假定的星形胶质细胞转化神经元实际上是内源性神经元。AAV 介导的 NEUROD1 和报告基因的共表达特异性和高效地诱导报告基因标记的神经元。然而,这些神经元不能通过谱系追踪策略回溯到静止或反应性星形胶质细胞。相反,通过逆行标记方法,我们的结果表明,内源性神经元是这些病毒报告基因标记神经元的来源。同样,尽管体内 PTBP1 的有效敲低,但遗传追踪的固有星形胶质细胞并未转化为神经元。总之,我们的结果强调了谱系追踪策略的必要性,该策略应广泛应用于体内细胞命运转变的研究。

相似文献

1
Revisiting astrocyte to neuron conversion with lineage tracing in vivo.
Cell. 2021 Oct 14;184(21):5465-5481.e16. doi: 10.1016/j.cell.2021.09.005. Epub 2021 Sep 27.
3
Efficient Dlx2-mediated astrocyte-to-neuron conversion and inhibition of neuroinflammation by NeuroD1.
Dev Neurobiol. 2024 Oct;84(4):274-290. doi: 10.1002/dneu.22951. Epub 2024 Jul 21.
4
New AAV tools fail to detect Neurod1-mediated neuronal conversion of Müller glia and astrocytes in vivo.
EBioMedicine. 2023 Apr;90:104531. doi: 10.1016/j.ebiom.2023.104531. Epub 2023 Mar 20.
6
Critical examination of Ptbp1-mediated glia-to-neuron conversion in the mouse retina.
Cell Rep. 2022 Jun 14;39(11):110960. doi: 10.1016/j.celrep.2022.110960.
7
Ptbp1 knockdown failed to induce astrocytes to neurons in vivo.
Gene Ther. 2023 Dec;30(12):801-806. doi: 10.1038/s41434-023-00382-5. Epub 2023 Feb 1.
8
NEUROD1 Instructs Neuronal Conversion in Non-Reactive Astrocytes.
Stem Cell Reports. 2017 Jun 6;8(6):1506-1515. doi: 10.1016/j.stemcr.2017.04.013. Epub 2017 May 11.

引用本文的文献

4
Cell and tissue reprogramming: Unlocking a new era in medical drug discovery.
Pharmacol Rev. 2025 Jun 26;77(5):100077. doi: 10.1016/j.pharmr.2025.100077.
5
Ptbp1 is not required for retinal neurogenesis and cell fate specification.
bioRxiv. 2025 Jul 3:2025.07.02.662808. doi: 10.1101/2025.07.02.662808.
6
Stem cell repair strategies for epilepsy.
Neural Regen Res. 2026 Apr 1;21(4):1428-1446. doi: 10.4103/NRR.NRR-D-24-01337. Epub 2025 Jun 19.
7
PTBP1 Depletion in Mature Astrocytes Reveals Distinct Splicing Alterations Without Neuronal Features.
bioRxiv. 2025 Jun 3:2025.05.30.657115. doi: 10.1101/2025.05.30.657115.
9
GADD45G operates as a pathological sensor orchestrating reactive gliosis and neurodegeneration.
Neuron. 2025 Jul 9;113(13):2176-2195.e10. doi: 10.1016/j.neuron.2025.04.033. Epub 2025 May 22.

本文引用的文献

1
Transcription factor-based gene therapy to treat glioblastoma through direct neuronal conversion.
Cancer Biol Med. 2021 Mar 23;18(3):860-74. doi: 10.20892/j.issn.2095-3941.2020.0499.
2
In vivo reprogramming of NG2 glia enables adult neurogenesis and functional recovery following spinal cord injury.
Cell Stem Cell. 2021 May 6;28(5):923-937.e4. doi: 10.1016/j.stem.2021.02.009. Epub 2021 Mar 5.
3
Disease Modeling with Human Neurons Reveals LMNB1 Dysregulation Underlying DYT1 Dystonia.
J Neurosci. 2021 Mar 3;41(9):2024-2038. doi: 10.1523/JNEUROSCI.2507-20.2020. Epub 2021 Jan 19.
4
Aging-relevant human basal forebrain cholinergic neurons as a cell model for Alzheimer's disease.
Mol Neurodegener. 2020 Oct 21;15(1):61. doi: 10.1186/s13024-020-00411-6.
5
Lineage tracing of direct astrocyte-to-neuron conversion in the mouse cortex.
Neural Regen Res. 2021 Apr;16(4):750-756. doi: 10.4103/1673-5374.295925.
6
Selective Neuronal Vulnerability in Alzheimer's Disease: A Network-Based Analysis.
Neuron. 2020 Sep 9;107(5):821-835.e12. doi: 10.1016/j.neuron.2020.06.010. Epub 2020 Jun 29.
7
Reversing a model of Parkinson's disease with in situ converted nigral neurons.
Nature. 2020 Jun;582(7813):550-556. doi: 10.1038/s41586-020-2388-4. Epub 2020 Jun 24.
8
Regeneration Through Cell Fate Reprogramming for Neural Repair.
Front Cell Neurosci. 2020 Apr 24;14:107. doi: 10.3389/fncel.2020.00107. eCollection 2020.
9
Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice.
Cell. 2020 Apr 30;181(3):590-603.e16. doi: 10.1016/j.cell.2020.03.024. Epub 2020 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验