Suppr超能文献

人工智能在微生物生物技术中的应用:超越炒作。

Artificial intelligence for microbial biotechnology: beyond the hype.

机构信息

Department of Environmental Microbiology, Eawag - Swiss Federal Institute for Aquatic Science and Technology, Dübendorf, Switzerland.

出版信息

Microb Biotechnol. 2022 Jan;15(1):65-69. doi: 10.1111/1751-7915.13943. Epub 2021 Oct 4.

Abstract

It has been a landmark year for artificial intelligence (AI) and biotechnology. Perhaps the most noteworthy of these advances was Google DeepMind's AlphaFold2 algorithm which smashed records in protein structure prediction (Jumper et al., 2021, Nature, 596, 583) complemented by progress made by other research groups around the globe (Baek et al., 2021, Science, 373, 871; Zheng et al., 2021, Proteins). For the first time in history, AI achieved protein structure models rivalling the accuracy of experimentally determined structures. The power of accurate protein structure prediction at our fingertips has countless implications for drug discovery, de novo protein design and fundamental research in chemical biology. While acknowledging the significance of these breakthroughs, this perspective aims to cut through the hype and examine some key limitations using AlphaFold2 as a lens to consider the broader implications of AI for microbial biotechnology for the next 15 years and beyond.

摘要

今年是人工智能 (AI) 和生物技术的标志性一年。这些进展中最值得注意的是谷歌 DeepMind 的 AlphaFold2 算法,它在蛋白质结构预测方面打破了记录 (Jumper 等人,2021 年,《自然》,596,583),同时全球其他研究小组也取得了进展 (Baek 等人,2021 年,《科学》,373,871;Zheng 等人,2021 年,《蛋白质》)。人工智能首次实现了与实验确定结构准确性相媲美的蛋白质结构模型。指尖上拥有准确的蛋白质结构预测能力,这对药物发现、从头设计蛋白质和化学生物学的基础研究具有无数的意义。虽然承认这些突破的重要性,但本文旨在透过炒作,以 AlphaFold2 为视角,审视一些关键限制,以考虑未来 15 年及以后 AI 对微生物生物技术的更广泛影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验