Suppr超能文献

基于数字光处理的可组合梯度的生物打印。

Digital Light Processing Based Bioprinting with Composable Gradients.

机构信息

Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.

Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore.

出版信息

Adv Mater. 2022 Jan;34(1):e2107038. doi: 10.1002/adma.202107038. Epub 2021 Oct 23.

Abstract

Recapitulation of complex tissues signifies a remarkable challenge and, to date, only a few approaches have emerged that can efficiently reconstruct necessary gradients in 3D constructs. This is true even though mimicry of these gradients is of great importance to establish the functionality of engineered tissues and devices. Here, a composable-gradient Digital Light Processing (DLP)-based (bio)printing system is developed, utilizing the unprecedented integration of a microfluidic mixer for the generation of either continual or discrete gradients of desired (bio)inks in real time. Notably, the precisely controlled gradients are composable on-the-fly by facilely by adjusting the (bio)ink flow ratios. In addition, this setup is designed in such a way that (bio)ink waste is minimized when exchanging the gradient (bio)inks, further enhancing this time- and (bio)ink-saving strategy. Various planar and 3D structures exhibiting continual gradients of materials, of cell densities, of growth factor concentrations, of hydrogel stiffness, and of porosities in horizontal and/or vertical direction, are exemplified. The composable fabrication of multifunctional gradients strongly supports the potential of the unique bioprinting system in numerous biomedical applications.

摘要

复杂组织的重建是一项重大挑战,迄今为止,只有少数几种方法能够有效地在 3D 结构中重建必要的梯度。即使模拟这些梯度对于构建具有功能的工程组织和设备非常重要,但事实确实如此。在这里,开发了一种基于可组合梯度数字光处理(DLP)的(生物)打印系统,该系统利用微流混合器的空前集成,实时生成所需(生物)墨水的连续或离散梯度。值得注意的是,通过简单地调整(生物)墨水的流速比,可以实时对精确控制的梯度进行组合。此外,这种设计方式可在更换梯度(生物)墨水时最大程度地减少(生物)墨水的浪费,进一步增强了这种节省时间和(生物)墨水的策略。举例说明了各种平面和 3D 结构,这些结构具有材料、细胞密度、生长因子浓度、水凝胶硬度以及水平和/或垂直方向的孔隙率的连续梯度。多功能梯度的可组合制造强烈支持该独特生物打印系统在众多生物医学应用中的潜力。

相似文献

1
Digital Light Processing Based Bioprinting with Composable Gradients.
Adv Mater. 2022 Jan;34(1):e2107038. doi: 10.1002/adma.202107038. Epub 2021 Oct 23.
3
Recent Advances in Formulating and Processing Biomaterial Inks for Vat Polymerization-Based 3D Printing.
Adv Healthc Mater. 2020 Aug;9(15):e2000156. doi: 10.1002/adhm.202000156. Epub 2020 Jun 11.
6
Alginate based hydrogel inks for 3D bioprinting of engineered orthopedic tissues.
Carbohydr Polym. 2022 Nov 15;296:119964. doi: 10.1016/j.carbpol.2022.119964. Epub 2022 Aug 5.
7
Digital light processing-based multi-material bioprinting: Processes, applications, and perspectives.
J Biomed Mater Res A. 2023 Apr;111(4):527-542. doi: 10.1002/jbm.a.37473. Epub 2022 Nov 27.
8
3D bioprinting of complex channels within cell-laden hydrogels.
Acta Biomater. 2019 Sep 1;95:214-224. doi: 10.1016/j.actbio.2019.02.038. Epub 2019 Mar 1.
9
Bioinspired Processing: Complex Coacervates as Versatile Inks for 3D Bioprinting.
Adv Mater. 2023 Jul;35(28):e2210769. doi: 10.1002/adma.202210769. Epub 2023 May 31.

引用本文的文献

1
Light-based vat-polymerization bioprinting.
Nat Rev Methods Primers. 2023;3. doi: 10.1038/s43586-023-00231-0. Epub 2023 Jun 22.
2
Light-based fabrication and 4D customization of hydrogel biomaterials.
Nat Rev Bioeng. 2025 Feb;3(2):159-180. doi: 10.1038/s44222-024-00234-w. Epub 2024 Sep 26.
3
Acoustic Bioprinting: A Glimpse Into an Emerging Field.
Small Methods. 2025 Jul 26:e2500733. doi: 10.1002/smtd.202500733.
4
Construction of organoids using bioprinting technology: a frontier exploration of cartilage repair.
J Orthop Translat. 2025 Jul 16;54:37-50. doi: 10.1016/j.jot.2025.06.020. eCollection 2025 Sep.
5
Lithography-based 3D printing of hydrogels.
Nat Rev Bioeng. 2025 Feb;3(2):108-125. doi: 10.1038/s44222-024-00251-9. Epub 2024 Oct 16.
6
The rise of 3D bioprinting advancements in modeling neurodegenerative diseases.
Ibrain. 2025 Apr 22;11(2):259-267. doi: 10.1002/ibra.12196. eCollection 2025 Summer.
7
Advances of 3D bioprinting technology for periodontal tissue regeneration.
iScience. 2025 Apr 25;28(6):112532. doi: 10.1016/j.isci.2025.112532. eCollection 2025 Jun 20.
8
Engineering in vitro vascular microsystems.
Microsyst Nanoeng. 2025 May 22;11(1):100. doi: 10.1038/s41378-025-00956-w.
9
Multi-material Gradient Printing Using Meniscus-enabled Projection Stereolithography (MAPS).
Adv Mater Technol. 2025 Mar 18;10(6). doi: 10.1002/admt.202400675. Epub 2024 Nov 15.
10
Digital light processing 3D printing of flexible devices: actuators, sensors and energy devices.
Microsyst Nanoeng. 2025 Mar 19;11(1):51. doi: 10.1038/s41378-025-00885-8.

本文引用的文献

1
A Smartphone-Enabled Portable Digital Light Processing 3D Printer.
Adv Mater. 2021 Sep;33(35):e2102153. doi: 10.1002/adma.202102153. Epub 2021 Jul 18.
2
Bioprinted Injectable Hierarchically Porous Gelatin Methacryloyl Hydrogel Constructs with Shape-Memory Properties.
Adv Funct Mater. 2020 Nov 11;30(46). doi: 10.1002/adfm.202003740. Epub 2020 Sep 6.
3
New Visible-Light Photoinitiating System for Improved Print Fidelity in Gelatin-Based Bioinks.
ACS Biomater Sci Eng. 2016 Oct 10;2(10):1752-1762. doi: 10.1021/acsbiomaterials.6b00149. Epub 2016 Aug 12.
4
Using Chick Chorioallantoic Membrane (CAM) Assay To Evaluate the Biocompatibility and Angiogenic Response to Biomaterials.
ACS Biomater Sci Eng. 2019 Jul 8;5(7):3190-3200. doi: 10.1021/acsbiomaterials.9b00172. Epub 2019 Jun 12.
5
An open-source handheld extruder loaded with pore-forming bioink for wound dressing.
Mater Today Bio. 2020 Aug 21;8:100074. doi: 10.1016/j.mtbio.2020.100074. eCollection 2020 Sep.
7
Digital Light Processing Based Three-dimensional Printing for Medical Applications.
Int J Bioprint. 2019 Nov 28;6(1):242. doi: 10.18063/ijb.v6i1.242. eCollection 2020.
8
Advances in the Fabrication of Biomaterials for Gradient Tissue Engineering.
Trends Biotechnol. 2021 Feb;39(2):150-164. doi: 10.1016/j.tibtech.2020.06.005. Epub 2020 Jul 7.
9
Recent Advances in Formulating and Processing Biomaterial Inks for Vat Polymerization-Based 3D Printing.
Adv Healthc Mater. 2020 Aug;9(15):e2000156. doi: 10.1002/adhm.202000156. Epub 2020 Jun 11.
10
Fundamentals and Applications of Photo-Cross-Linking in Bioprinting.
Chem Rev. 2020 Oct 14;120(19):10662-10694. doi: 10.1021/acs.chemrev.9b00812. Epub 2020 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验