Suppr超能文献

抗 CRISPR 蛋白 AcrIIC4 的晶体结构

Crystal structure of the anti-CRISPR, AcrIIC4.

机构信息

College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea.

Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea.

出版信息

Protein Sci. 2021 Dec;30(12):2474-2481. doi: 10.1002/pro.4214. Epub 2021 Oct 29.

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPRs)-CRISPR-associated protein systems are bacterial and archaeal defense mechanisms against invading elements such as phages and viruses. To overcome these defense systems, phages and viruses have developed inhibitors called anti-CRISPRs (Acrs) that are capable of inhibiting the host CRISPR-Cas system via different mechanisms. Although the inhibitory mechanisms of AcrIIC1, AcrIIC2, and AcrIIC3 have been revealed, the inhibitory mechanisms of AcrIIC4 and AcrIIC5 have not been fully understood and structural data are unavailable. In this study, we elucidated the crystal structure of Type IIC anti-CRISPR protein, AcrIIC4. Our structural analysis revealed that AcrIIC4 exhibited a helical bundle fold comprising four helixes. Further biochemical and biophysical analyses showed that AcrIIC4 formed a monomer in solution, and monomeric AcrIIC4 directly interacted with Cas9 and Cas9/sgRNA complex. Discovery of the structure of AcrIIC4 and their interaction mode on Cas9 will help us elucidate the diversity in the inhibitory mechanisms of the Acr protein family.

摘要

成簇规律间隔短回文重复 (CRISPRs)-CRISPR 相关蛋白系统是细菌和古菌抵御噬菌体和病毒等入侵元素的防御机制。为了克服这些防御系统,噬菌体和病毒已经开发出称为抗 CRISPR 蛋白 (Acr) 的抑制剂,这些抑制剂能够通过不同的机制抑制宿主 CRISPR-Cas 系统。虽然已经揭示了 AcrIIC1、AcrIIC2 和 AcrIIC3 的抑制机制,但 AcrIIC4 和 AcrIIC5 的抑制机制尚未完全阐明,并且缺乏结构数据。在这项研究中,我们阐明了 IIC 型抗 CRISPR 蛋白 AcrIIC4 的晶体结构。我们的结构分析表明,AcrIIC4 呈现由四个螺旋组成的螺旋束折叠。进一步的生化和生物物理分析表明,AcrIIC4 在溶液中形成单体,单体 AcrIIC4 直接与 Cas9 和 Cas9/sgRNA 复合物相互作用。AcrIIC4 的结构发现及其与 Cas9 的相互作用模式将帮助我们阐明 Acr 蛋白家族抑制机制的多样性。

相似文献

1
Crystal structure of the anti-CRISPR, AcrIIC4.
Protein Sci. 2021 Dec;30(12):2474-2481. doi: 10.1002/pro.4214. Epub 2021 Oct 29.
3
Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease.
PLoS Biol. 2019 Oct 11;17(10):e3000496. doi: 10.1371/journal.pbio.3000496. eCollection 2019 Oct.
4
Inhibitory mechanism of CRISPR-Cas9 by AcrIIC4.
Nucleic Acids Res. 2023 Sep 22;51(17):9442-9451. doi: 10.1093/nar/gkad669.
5
Phage AcrIIA2 DNA Mimicry: Structural Basis of the CRISPR and Anti-CRISPR Arms Race.
Mol Cell. 2019 Feb 7;73(3):611-620.e3. doi: 10.1016/j.molcel.2018.11.011. Epub 2018 Dec 31.
6
Diverse Mechanisms of CRISPR-Cas9 Inhibition by Type IIC Anti-CRISPR Proteins.
Mol Cell. 2019 Apr 18;74(2):296-309.e7. doi: 10.1016/j.molcel.2019.01.038. Epub 2019 Mar 5.
7
Mechanism of inhibition of CRISPR-Cas9 by anti-CRISPR protein AcrIIC1.
Biochem Biophys Res Commun. 2023 Apr 30;654:34-39. doi: 10.1016/j.bbrc.2023.02.065. Epub 2023 Feb 28.
8
Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9.
Mol Cell. 2017 Jul 6;67(1):117-127.e5. doi: 10.1016/j.molcel.2017.05.024. Epub 2017 Jun 9.
9
Nucleic Acid-Dependent Conformational Changes in CRISPR-Cas9 Revealed by Site-Directed Spin Labeling.
Cell Biochem Biophys. 2017 Jun;75(2):203-210. doi: 10.1007/s12013-016-0738-5. Epub 2016 Jun 24.
10
PpCas9 from Pasteurella pneumotropica - a compact Type II-C Cas9 ortholog active in human cells.
Nucleic Acids Res. 2020 Dec 2;48(21):12297-12309. doi: 10.1093/nar/gkaa998.

引用本文的文献

1
Inhibitory mechanism of CRISPR-Cas9 by AcrIIC4.
Nucleic Acids Res. 2023 Sep 22;51(17):9442-9451. doi: 10.1093/nar/gkad669.
2
Keeping Cas9 out of the (R-)loop.
Proc Natl Acad Sci U S A. 2023 Aug 22;120(34):e2311727120. doi: 10.1073/pnas.2311727120. Epub 2023 Aug 11.
3
AcrIIC4 inhibits type II-C Cas9 by preventing R-loop formation.
Proc Natl Acad Sci U S A. 2023 Aug;120(31):e2303675120. doi: 10.1073/pnas.2303675120. Epub 2023 Jul 26.
4
A comprehensive appraisal of mechanism of anti-CRISPR proteins: an advanced genome editor to amend the CRISPR gene editing.
Front Plant Sci. 2023 Jun 23;14:1164461. doi: 10.3389/fpls.2023.1164461. eCollection 2023.

本文引用的文献

1
2
Conquering CRISPR: how phages overcome bacterial adaptive immunity.
Curr Opin Biotechnol. 2021 Apr;68:30-36. doi: 10.1016/j.copbio.2020.09.008. Epub 2020 Oct 24.
3
Structures and Strategies of Anti-CRISPR-Mediated Immune Suppression.
Annu Rev Microbiol. 2020 Sep 8;74:21-37. doi: 10.1146/annurev-micro-020518-120107. Epub 2020 Jun 5.
4
Machine learning predicts new anti-CRISPR proteins.
Nucleic Acids Res. 2020 May 21;48(9):4698-4708. doi: 10.1093/nar/gkaa219.
6
Inhibition of CRISPR-Cas9 ribonucleoprotein complex assembly by anti-CRISPR AcrIIC2.
Nat Commun. 2019 Jun 26;10(1):2806. doi: 10.1038/s41467-019-10577-3.
7
Diverse Mechanisms of CRISPR-Cas9 Inhibition by Type IIC Anti-CRISPR Proteins.
Mol Cell. 2019 Apr 18;74(2):296-309.e7. doi: 10.1016/j.molcel.2019.01.038. Epub 2019 Mar 5.
9
10
Protein Inhibitors of CRISPR-Cas9.
ACS Chem Biol. 2018 Feb 16;13(2):417-423. doi: 10.1021/acschembio.7b00831. Epub 2018 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验