Suppr超能文献

I 型 C 蛋白通过多种机制抑制 CRISPR-Cas9。

Diverse Mechanisms of CRISPR-Cas9 Inhibition by Type IIC Anti-CRISPR Proteins.

机构信息

CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.

Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.

出版信息

Mol Cell. 2019 Apr 18;74(2):296-309.e7. doi: 10.1016/j.molcel.2019.01.038. Epub 2019 Mar 5.

Abstract

Anti-CRISPR proteins (Acrs) targeting CRISPR-Cas9 systems represent natural "off switches" for Cas9-based applications. Recently, AcrIIC1, AcrIIC2, and AcrIIC3 proteins were found to inhibit Neisseria meningitidis Cas9 (NmeCas9) activity in bacterial and human cells. Here we report biochemical and structural data that suggest molecular mechanisms of AcrIIC2- and AcrIIC3-mediated Cas9 inhibition. AcrIIC2 dimer interacts with the bridge helix of Cas9, interferes with RNA binding, and prevents DNA loading into Cas9. AcrIIC3 blocks the DNA loading step through binding to a non-conserved surface of the HNH domain of Cas9. AcrIIC3 also forms additional interactions with the REC lobe of Cas9 and induces the dimerization of the AcrIIC3-Cas9 complex. While AcrIIC2 targets Cas9 orthologs from different subtypes, albeit with different efficiency, AcrIIC3 specifically inhibits NmeCas9. Structure-guided changes in NmeCas9 orthologs convert them into anti-CRISPR-sensitive proteins. Our studies provide insights into anti-CRISPR-mediated suppression mechanisms and guidelines for designing regulatory tools in Cas9-based applications.

摘要

抗 CRISPR 蛋白(Acr)针对 CRISPR-Cas9 系统代表了 Cas9 为基础的应用的天然“关闭开关”。最近,发现 AcrIIC1、AcrIIC2 和 AcrIIC3 蛋白抑制脑膜炎奈瑟菌 Cas9(NmeCas9)在细菌和人类细胞中的活性。这里我们报告了生化和结构数据,这些数据表明 AcrIIC2 和 AcrIIC3 介导的 Cas9 抑制的分子机制。AcrIIC2 二聚体与 Cas9 的桥螺旋相互作用,干扰 RNA 结合,并阻止 DNA 加载到 Cas9 中。AcrIIC3 通过与 Cas9 的 HNH 结构域的非保守表面结合来阻止 DNA 加载步骤。AcrIIC3 还与 Cas9 的 REC 叶形成额外的相互作用,并诱导 AcrIIC3-Cas9 复合物的二聚化。虽然 AcrIIC2 靶向来自不同亚型的 Cas9 同源物,但效率不同,AcrIIC3 特异性抑制 NmeCas9。基于结构的 NmeCas9 同源物的变化将它们转化为抗 CRISPR 敏感蛋白。我们的研究提供了对抗 CRISPR 介导的抑制机制的深入了解,并为 Cas9 为基础的应用中设计调控工具提供了指导。

相似文献

1
Diverse Mechanisms of CRISPR-Cas9 Inhibition by Type IIC Anti-CRISPR Proteins.
Mol Cell. 2019 Apr 18;74(2):296-309.e7. doi: 10.1016/j.molcel.2019.01.038. Epub 2019 Mar 5.
3
Mechanism of inhibition of CRISPR-Cas9 by anti-CRISPR protein AcrIIC1.
Biochem Biophys Res Commun. 2023 Apr 30;654:34-39. doi: 10.1016/j.bbrc.2023.02.065. Epub 2023 Feb 28.
4
Crystal structure of the anti-CRISPR, AcrIIC4.
Protein Sci. 2021 Dec;30(12):2474-2481. doi: 10.1002/pro.4214. Epub 2021 Oct 29.
5
Structural Investigation of Self-Assembly and Target Binding of Anti-CRISPR AcrIIC2.
CRISPR J. 2021 Jun;4(3):448-458. doi: 10.1089/crispr.2020.0119. Epub 2021 May 26.
6
A Broad-Spectrum Inhibitor of CRISPR-Cas9.
Cell. 2017 Sep 7;170(6):1224-1233.e15. doi: 10.1016/j.cell.2017.07.037. Epub 2017 Aug 24.
7
Structures of Neisseria meningitidis Cas9 Complexes in Catalytically Poised and Anti-CRISPR-Inhibited States.
Mol Cell. 2019 Dec 19;76(6):938-952.e5. doi: 10.1016/j.molcel.2019.09.025. Epub 2019 Oct 24.
10

引用本文的文献

1
One-shot design of functional protein binders with BindCraft.
Nature. 2025 Aug 27. doi: 10.1038/s41586-025-09429-6.
2
A census of anti-CRISPR proteins reveals AcrIE9 as an inhibitor of K12 Type IE CRISPR-Cas system.
bioRxiv. 2025 May 10:2025.05.07.652737. doi: 10.1101/2025.05.07.652737.
3
CRISPR-Cas Systems: A Functional Perspective and Innovations.
Int J Mol Sci. 2025 Apr 12;26(8):3645. doi: 10.3390/ijms26083645.
4
Nano-Polymers as Cas9 Inhibitors.
Polymers (Basel). 2025 Feb 5;17(3):417. doi: 10.3390/polym17030417.
5
Current Updates of CRISPR/Cas System and Anti-CRISPR Proteins: Innovative Applications to Improve the Genome Editing Strategies.
Int J Nanomedicine. 2024 Oct 9;19:10185-10212. doi: 10.2147/IJN.S479068. eCollection 2024.
6
Versatile plant genome engineering using anti-CRISPR-Cas12a systems.
Sci China Life Sci. 2024 Dec;67(12):2730-2745. doi: 10.1007/s11427-024-2704-7. Epub 2024 Aug 15.
8
Expanding plant genome editing scope and profiles with CRISPR-FrCas9 systems targeting palindromic TA sites.
Plant Biotechnol J. 2024 Sep;22(9):2488-2503. doi: 10.1111/pbi.14363. Epub 2024 May 7.
9
An anti-CRISPR that represses its own transcription while blocking Cas9-target DNA binding.
Nat Commun. 2024 Feb 28;15(1):1806. doi: 10.1038/s41467-024-45987-5.

本文引用的文献

1
Phage AcrIIA2 DNA Mimicry: Structural Basis of the CRISPR and Anti-CRISPR Arms Race.
Mol Cell. 2019 Feb 7;73(3):611-620.e3. doi: 10.1016/j.molcel.2018.11.011. Epub 2018 Dec 31.
2
Temperature-Responsive Competitive Inhibition of CRISPR-Cas9.
Mol Cell. 2019 Feb 7;73(3):601-610.e5. doi: 10.1016/j.molcel.2018.11.016. Epub 2018 Dec 27.
3
Discovery of widespread type I and type V CRISPR-Cas inhibitors.
Science. 2018 Oct 12;362(6411):240-242. doi: 10.1126/science.aau5174. Epub 2018 Sep 6.
4
Anti-CRISPR Phages Cooperate to Overcome CRISPR-Cas Immunity.
Cell. 2018 Aug 9;174(4):908-916.e12. doi: 10.1016/j.cell.2018.05.058. Epub 2018 Jul 19.
5
Bacteriophage Cooperation Suppresses CRISPR-Cas3 and Cas9 Immunity.
Cell. 2018 Aug 9;174(4):917-925.e10. doi: 10.1016/j.cell.2018.06.013. Epub 2018 Jul 19.
6
Systematic discovery of antiphage defense systems in the microbial pangenome.
Science. 2018 Mar 2;359(6379). doi: 10.1126/science.aar4120. Epub 2018 Jan 25.
7
Crystal structures of Mmm1 and Mdm12-Mmm1 reveal mechanistic insight into phospholipid trafficking at ER-mitochondria contact sites.
Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):E9502-E9511. doi: 10.1073/pnas.1715592114. Epub 2017 Oct 25.
8
9
The Anti-CRISPR Story: A Battle for Survival.
Mol Cell. 2017 Oct 5;68(1):8-14. doi: 10.1016/j.molcel.2017.09.002.
10
A Broad-Spectrum Inhibitor of CRISPR-Cas9.
Cell. 2017 Sep 7;170(6):1224-1233.e15. doi: 10.1016/j.cell.2017.07.037. Epub 2017 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验